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Weighted Low-rank Tensor Recovery for
Hyperspectral Image Restoration

Yi Chang, Luxin Yan, Xi-Le Zhao, Houzhang Fang, Zhijun Zhang and Sheng Zhong

Abstract—Hyperspectral imaging, providing abundant spatial
and spectral information simultaneously, has attracted a lot of
interest in recent years. Unfortunately, due to the hardware
limitations, the hyperspectral image (HSI) is vulnerable to
various degradations, such as noises (random noise), blurs (Gaus-
sian and uniform blur), and down-sampled (both spectral and
spatial downsample), each corresponding to the HSI denoising,
deblurring and super-resolution task, respectively. Previous HSI
restoration methods are designed for one specific task only.
Besides, most of them start from the 1-D vector or 2-D matrix
models and cannot fully exploit the structurally spectral-spatial
correlation in 3-D HSI. To overcome these limitations, in this
work, we propose a unified low-rank tensor recovery model
for comprehensive HSI restoration tasks, in which non-local
similarity within spectral-spatial cubic and spectral correlation
are simultaneously captured by 3-order tensors. Furthermore,
to improve the capability and flexibility, we formulate it as a
weighted low-rank tensor recovery (WLRTR) model by treating
the singular values differently, and study its analytical solution.
We also consider the stripe noise in HSI as the sparse error
by extending WLRTR to robust principal component analysis
(WLRTR-RPCA). Extensive experiments demonstrate the pro-
posed WLRTR models consistently outperform state-of-the-art
methods in typical HSI low-level vision tasks, including denoising,
destriping, deblurring, and super-resolution.

Index Terms—Low-rank tensor approximation, higher-order
singular value decomposition, hyperspectral image restoration.

I. INTRODUCTION

The hyperspectral image consists of multiple discrete bands
at specific frequencies. The HSI can deliver additional infor-
mation that the human eye fails to capture for real scenes, and
has been attracting a lot of interest for researches from a wide
range of application fields, such as anomaly detection [1] and
classification [2]. However, HSI always suffers from various
degradations, such as random noise (caused by photon effects),
stripe noise (due to calibration error between adjacent detec-
tors), blur (on account of atmospheric turbulence or system
motion), and low spatial resolution (because of the hardware
limitation). It is economically unsustainable and impractical

This work is supported by the projects of the National Natural Science
Foundation of China under Grants No. 61571207, 61433007, 41501371, and
61876203, and in part by the project of the Hubei Provincial Natural Science
Foundation of China under Grants No. 2018CFA089.

Y. Chang, L. Yan, Z. Zhang, and S. Zhong are with the National Key
Laboratory of Science and Technology on Multispectral Information Process-
ing, School of Artificial Intelligence and Automation, Huazhong University
of Science and Technology, Wuhan, Hubei, 430074, China. (e-mail:{yichang,
yanluxin, zhijunzhang, zhongsheng}@hust.edu.cn).

H. Fang is with the School of Software, Xidian University, Xian, 710071,
China (e-mail: houzhangfang@xidian.edu.cn).

X. Zhao is with the School of Mathematical Sciences, University of
Electronic Science and Technology of China, Chengdu, 611731, China. (e-
mail: xlzhao122003@163.com;)

to improve the HSI quality merely by hardware scheme.
Therefore, it is natural to introduce the image processing
based approaches for obtaining a high-quality HSI before the
subsequent applications. Mathematically, the problem of HSI
restoration can be formulated by a linear model as follow:

Y = Tsa(X ) + E + N , (1)
where Y ∈ Rr×c×B is an observed low spatial-resolution
image, X ∈ RR×C×B (r � R, c � C) represents the
original high spatial-resolution image, E ∈ Rr×c×B denotes
the sparse error (mainly the stripe noise), N ∈ Rr×c×B means
the additive random noise, and Tsa(•) stands for the spatially
linear degradation operator.

With different settings, Eq. (1) can represent different HSI
restoration problems. When Tsa(•) is an identity tensor, the
problem (1) becomes HSI denoising (only consider N ) or
HSI destriping (only consider E), or HSI mixed noise re-
moval (both N and E); when Tsa(•) is a blur operator, the
problem (1) turns into the HSI deblurring; for HSI super-
resolution, Tsa(•) is a composite operator of blurring and
spatial down-sampling. Moreover, in HSI super-resolution,
there is another guided low spectral-resolution multispectral
image Z ∈ RR×C×b (b � B) (usually RGB color image),
which can be formulated as follow:

Z = Tse(X ) + N , (2)
where Tse(•) denotes a spectral downsampling procedure,
which can be expressed as X×3P, and P ∈ Rb×B is a
transformation matrix mapping the HSI X ∈ RR×C×B to
its RGB representation Z ∈ RR×C×b (b � B). The tensor
product is defined in Section II.

To cope with the ill-posed nature of the HSI restoration task,
various prior knowledge of the HSI is proposed to regularize
the solution space:

min
X

1

2
||Y−Tsa(X )−E||2F+

1

2
||Z−Tse(X )||2F+λΦ(X ), (3)

where || • ||2F stands for the Frobenius norm, the first two data
fidelity terms represent the spatial and spectral degradation
process respectively, Φ(X ) is a regularization term to enforce
the solution with desired property, and λ is a trade-off regular-
ization parameter. The success of the HSI restoration heavily
depends on how we the choose proper prior knowledge. From
the perspective of the data format in the prior, we classify the
existing HSI restoration methods into three categories: one-
dimensional vector-based sparse representation methods [3]–
[8], two-dimensional matrix-based low-rank matrix recovery
methods [9]–[18], and three-dimensional tensor-based approx-
imation methods [19]–[31].

Although the existing works have made significant pro-
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gresses in HSI restoration, there are three main drawbacks to
be improved. Firstly, transforming the multi-dimensional HSI
data into a vector or matrix usually breaks the spectral-spatial
structural correlation. The recent works [25], [32] consistently
indicate that the tensor-based methods substantially preserve
the intrinsic structure correlation with better restoration re-
sults. Besides, some tensor-based methods are quite heuristic
without taking the sparsity prior into consideration, which
makes them hard to be extended to other HSI restoration tasks.
Secondly, compared with natural 2-D images, the HSI data
could provide us extra spectral information. Unfortunately,
many HSI restoration methods fall into the ‘trap’ of high
spectral correlation, while ignoring the non-local similarity
[14], and vice versa [32]. Thus the results of these approaches
may be suboptimal. Finally, most of the previous methods
only employ the conventional L1 or nuclear norm as the
sparsity constraint for HSI restoration. As a result, each patch
is encoded equally. Such a mechanism may not take advantage
of the structural difference of image patch sufficiently.

In this work, to overcome the aforementioned drawbacks,
we present a unified HSI restoration framework via the
weighted low-rank tensor recovery model. The tensor format
naturally offers a unified understanding of the vector/matrix-
based recovery models. Compared with the state-of-the-art
HSI restoration methods, the contributions of the proposed
work are as follows:

• We propose a weighted low-rank tensor recovery model
for HSI restoration, where the singular values in the core
tensor are of different importance and assigned different
weights. The simple yet effective weighted operation
has immediate physical interpretation, which has been
extensively studied in the matrix. We demonstrate that
the weighted strategy could be well extended to the tensor
and facilitates the HSI modeling.

• Most of the HSI restoration methods encode the spectral
or spatial information independently, ignore the spatial-
spectral structural correlation. Our method employs the
low-rank tensor prior to model the spatial non-local
self-similarity and spectral correlation property simul-
taneously, better preserving the intrinsic spectral-spatial
structural correlation. Moreover, we extend WLRTR to
the WLRT-RRPCA for the sparse error modeling.

• To our knowledge, this is the first work that com-
prehensively considers the HSI restoration in a unified
model. We validate WLRTR on several representative
HSI restoration tasks, such as denoising, destriping, de-
blurring, and super-resolution, and the proposed WLRTR
model consistently outperforms the state-of-the-art meth-
ods by a large margin. Further, we show that the WLRTR
can be well applied to multispectral images.

The related HSI restoration methods are introduced in
Section II. Section III presents the weighted low-rank tensor
recovery modeling, and analyzes its closed-form solution.
Section IV proposes the concrete objective function of each
individual HSI restoration task, and gives the corresponding
optimization procedures. Extensive experimental results are
reported in Section V. Section VI concludes this paper.

II. RELATED WORK

Low-rank Modeling: The low-rank models have been exten-
sively studied in HSI restorations [9]–[12], [14]–[17], [19]–
[27]. The two-dimensional low-rank matrix recovery methods
have shown great effectiveness to discover the intrinsic low-
dimensional structures in high-dimensional HSI data. In [10],
by lexicographically ordering the 3-D cube into a 2-D matrix
representation along the spectral dimension, Zhang et al.
proposed a low-rank matrix restoration model for mixed noise
removal in HSI. A lot of works follow this research line
[11], [12], [14], [15], [18]. To better preserve the spatial-
spectral correlation, the low-rank tensors recovery methods
have been proposed [21]–[31]. Previous tensor-based meth-
ods equally treat each core tensor coefficient, ignoring the
fact that each coefficient represents the different correlations
across each mode. The reweighting strategy interprets the fine-
grained structural discrepancy, and has been proven effective
in vector/matrix cases [33], [34], while it has received less
attention in tensor-based HSI restorations. In this work, we
further take the fine-grained intrinsic sparsity of the core tensor
into consideration via reweighting strategy, so as to better
encode the structure correlation.
HSI Denoising: Image denoising is a test bed for various tech-
niques. Consequently, numerous approaches for HSI denoising
have been proposed [35]–[37]. The spectral correlation and
nonlocal self-similarity are two kinds of intrinsic characteristic
underlying an HSI. Most previous HSI denoising methods
focus on the spectral correlation such as the wavelet methods
[4], total variational methods [8], the low-rank matrix recovery
methods [10], [11], [14], [38], or the nonlocal self-similarity
such as BM4D [39], HOSVD [40] individually. Recently,
Peng et al. [23] firstly modeled them simultaneously in tensor
format. However, the TDL [23] is quite heuristic and short of
a concise formulation, and thus lack of the flexibility to other
HSI restoration tasks. Several tensor works [24]–[27] follow
the research line of [23], and model the sparsity of the core
tensor in a principled manner. Interested readers could refer
to [15] for detailed background of HSI denoising.
HSI Destriping: Stripe noise is a very common structural
noise in HSI. Traditional HSI destriping methods [10], [41]–
[44] treated this problem as a denoising task and estimate
the image directly with white Gaussian noise assumption.
Further, Meng et al. [38], [45] hold the point that the stripe
line is a kind of structural noise, and introduced the mixture
of Gaussians (MoG) noise assumption to accommodate the
stripe noise characteristic. On the contrary, some works started
from the opposite direction by estimating the stripe noise only
[46]–[48]. These methods regarded the stripe noise as a kind
of specific image structure with fewer variables and regular
patterns, which makes the problem easier to be solved. Our
recent work [17] proposed to treat the HSI destriping task as an
image decomposition task, in which the clear image and stripe
components were treated equally and estimated iteratively.
Most of the previous methods are 2-D based methods, failing
to capture the spectral coherence. Compared with tensor-
based RPCA methods [49], [50], our method further takes
the structurally directional property of the sparse error into
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Fig. 1: The illustration of the HOSVD.

consideration. For the first time, we introduce the L211 norm
(Section IV-B) into the tensor RPCA for structural stripe noise
removal. Interested readers could refer to [17] for details.
HSI Deblurring: Natural image deblurring aims to recover a
sharp latent image from a blurred one [51], which is a classical
and active research field within the last decade. Numerous
HSI deblurring methods directly learn natural image priors
by assuming the widely used sparsity of image gradients,
e.g., Huber-Markov prior [52], the total variation (TV) [53],
and Gaussian mixture model (GMM) [54]. Only recently, the
spatial-spectral joint total variation has been introduced to HSI
deblurring [55], [56]. In general, most previous HSI deblurring
methods only exploit the spatial information, while none of
them have utilized the non-local self-similarity property in
HSI. In this work, we focus on the non-blind HSI deblurring,
and show that the additional spectral correlation and non-local
information would significantly improve the HSI deblurring
performance.
HSI Super-resolution: HSI super-resolution refers to the
fusion of a hyperspectral image (low spatial but high spectral-
resolution) with a panchromatic/multispectral image (high
spatial but low spectral-resolution, usually RGB image). The
most popular sparsity promoting methods mainly include the
sparse representation [6], [7], [57]–[60] and the matrix fac-
torization approach [5], [61]–[64]. In [6], the authors applied
the dictionary learning embedded in the spectral subspace to
exploit the sparsity of hyperspectral images. In [5], Dong et
al. proposed a non-negative structured sparse representation
(NSSR) approach with the prior knowledge about spatio-
spectral sparsity of the hyperspectral image. Analog to classi-
cal super-resolution [65], a sparse matrix factorization method
[62] borrowed the idea that both the LR hyperspectral image
and HR RGB image share the same coding coefficients. The
HR hyperspectral image was then reconstructed by multiply-
ing the learned basis from the HR RGB image and sparse
coefficients from the LR hyperspectral image. Recently, Dian
et al. [32] proposed a non-local sparse Tucker tensor factoriza-
tion (NLSTF) model for HSI super-resolution. The interested
readers can refer to the survey [66].

III. WEIGHTED LOW-RANK TENSOR RECOVERY MODEL

A. Notations and Preliminaries

In this paper, we denote tensors by boldface Euler script
letters, e.g., X . Matrices are represented as boldface capital
letters, e.g., X; vectors are expressed with boldface lowercase
letters, e.g., x, and scalars are denoted by lowercase letters,

e.g., x. The i-th entry of a vector x is denoted by xi, element
(i, j) of a matrix X is denoted by xij , and element (i, j, k) of
a third-order tensor X is denoted by xijk.

Fibers are the higher-order analogue of matrix rows and
columns. A fiber of an N-dimensional tensor is a 1-D vector
defined by fixing all indices but one [67]. A Slice of an N-
dimensional tensor is a 2-D matrix defined by fixing all but
two indices [67]. For a third order tensor, its column, row, and
tube fibers, denoted by x:jk, xi:k, and xij:, respectively.
Definition 1 (Tensor norms) The Frobenius norm of an
N order tensor X ∈ RI1×I2×···×IN is the square root of
the sum of the squares of all its elements, i.e., ||X ||F =√∑I1

i1=1

∑I2
i2=1 · · ·

∑IN
iN=1 x

2
i1i2···iN . The L1 norm of an N-

order tensor is the sum of the absolute value of all its
elements, i.e., ||X ||1 =

∑I1
i1=1

∑I2
i2=1 · · ·

∑IN
iN=1 |xi1i2···iN |.

These norms for tensor are analogous to the matrix norm.
Definition 2 (Tensor matricization) Matricization, also
named as unfolding or flattening, is the process of reordering
the elements of an N-order tensor into a matrix. The mode-
n matricization X(n) ∈ RIn×(I1···In−1In···IN ) of a tensor
X ∈ RI1×I2×···×IN is obtained by taking all the mode-n fibers
to be the columns of the resulting matrix.
Definition 3 (Tensor product) Here we just consider the
tensor n-mode product, i.e., multiplying a tensor by a matrix
in mode n, which will be used in HOSVD latter. Interested
readers can refer to Bader and Kolda [67] for a full treatment
of tensor multiplication. For a tensor X ∈ RI1×I2×···×IN ,
its n-mode product with a matrix U ∈ RJ×In is denoted by
Z = X×nU, and Z ∈ RI1×···×In−1×J×In+1×···×IN . Each
element in Z can be represented as

zi1···in−1jin+1···iN =
∑In

in=1
xi1i2···iNujin . (4)

Definition 4 (Tensor SVD) The Tucker decomposition is a
kind of higher-order SVD (HOSVD), which decomposes a
tensor into a core tensor multiplied by a matrix along each
mode [19]:

X = S×1U1×2U2×3 · · · ×NUN , (5)

where X ∈ RI1×I2×···×IN , S ∈ RI1×I2×···×IN is the core
tensor similar to the singular values in matrix, and its intensity
shows the level of interaction between different components,
Ui ∈ RIi×Ii is the column-wise orthonormal factor matrix and
can be regarded as the principal components in each mode.
The main purpose of our work is to estimate the core tensors
S and the clean image tensor X in presence of the degraded
tensor Y , as shown in Fig. 1.

B. WLRTR for 3-D HSI Restoration

1) Why Low-rank Tensor Recovery: One major shortcom-
ing of 2-D low-rank is that it can only work in the presence
of 2-way (matrix) data. However, the real data, such as HSIs
and color images, are ubiquitously in three-dimensional way,
also referred to as 3-order tensor. To preserve the structural
information, we introduce the low-rank tensor recovery model
to handle the tensor data by taking advantage of its multi-
dimensional structure.
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Fig. 2: HOSVD analysis on 3-order tensor. (a) Singular values
of core tensor bigger than 1. (b) Plot of the singular values of
both clean and noisy tensors.

We apply the HOSVD on the tensor to see how the sparsity
of its higher-order singular value distributes in 3-order tensor,
namely its higher-order low-rank property. In Fig. 2, we give a
visualization for facilitating the understanding of the sparsity
in the core tensor. There are two observations we make here.
First, Figure 2(a) shows the location of singular values in the
core tensor, according to their magnitudes. In Fig. 2(a), we
can observe that singular values of the core tensor exhibit
significant sparsity with different degrees along each mode.
More specifically, the magnitude of the singular value shows
a general descending tendency along the 2-mode and 3-mode.
Along the 2-mode, due to the strong redundancy of the non-
local cubics, the coefficients in the core tensor along this mode
tend to be decreasing very fast to zero. And along the 3-mode,
due to the high spectral correlation, the coefficients in the
core tensor along this mode tend to decrease to zero with
relatively slow speed. Second, from Fig. 2(b), we can observe
that singular values of the clean cubic exist much more sparsity
than those of the noisy cubics, and follow an extremely sharp
exponential decay rule. Moreover, the intrinsic sparsity of the
higher-order singular values of the 3-D cubic is much more
apparent than that of the singular values of the 2-D patch [27].
Therefore, it is natural to use the tensor low-rank model for
HSIs recovery problem.

In Fig. 3, we give a visual comparison between the 3-
order cubic recovery and 2-order matrix recovery. Figure 3(b)
shows the result of 2-D spatial low-rank recovery result, where
the low-rank matrix is formed via spatial non-local similar
patches. Figure 3(c) shows the result of 2-D spectral low-
rank recovery result, where the low-rank matrix is formed
via spectral similar bands. Figure 3(d) shows the result of the
proposed low-rank tensor recovery. It can be inferred from the
visual appearance and PSNR values that the proposed low-rank
tensor recovery method has an obvious advantage over low-
rank matrix recovery methods in terms of both noise reduction
and texture preserving.

2) Weighted Low-rank Tensor Recovery Model: For the
problem (3), the variable splitting technique [68] is usually
introduced to decouple the data fidelity term and regularization
term by introducing an auxiliary variable Li. Consequently,
for the regularization-related subproblem, it can be regarded
as an image denoising problem as follow:

Φ(Li) =
∑

i

1

σ2
i

||RiX −Li||2F + rank(Li), (6)

(a) Noisy (b) 2-D Spatial Low-rank (c) 2-D Spectral Low-rank (d) 3-D Tensor Low-rank

Fig. 3: The advantage of the low-rank tensor recovery over
low-rank matrix recovery. (a) Simulated noisy image under
Gaussian noise (sigma = 10, PSNR = 28.13dB). (b) 2-D low-
rank matrix recovery result via spatial non-local similarity
(PSNR = 37.56dB). (c) 2-D low-rank matrix recovery result
via spectral correlation (PSNR = 39.18dB). (d) 3-D low-rank
tensor recovery result (PSNR = 42.95dB).

where RiX is the constructed 3-order tensor for each exem-
plar cubic at location i, and our goal is to estimate the cor-
responding low-rank approximation Li under noise variance
σ2
i .
The low-rank regularization has been widely used in matrix

recovery, and the nuclear norm is usually introduced as the
surrogate functional of low-rank constraint. In this work, we
borrow this notion in 2-D matrix to define the tensor nuclear
norm of Li as ||Li||∗ =

∑
j |σj(Li)|1, namely the sum of its

higher-order singular values. Then, the low-rank tensor Li can
be recovered by solving the following optimization problem:

L̂i = arg min
Li

1

σ2
i

||RiX −Li||2F + ||Li||∗. (7)

However, this tensor nuclear norm has not considered
the fine-grained sparsity configurations inside the coefficient
tensor. As seen in Fig. 2(b), the singular values of clean
tensor RiX exhibit strong sparsity, in which most of the
singular values are close to zero. For the singular values of its
corresponding noisy tensor, the larger singular values are close
to the singular values of the clean tensor, while the small and
trivial singular values are obviously larger than the singular
values of the clean tensor. This phenomenon motivates us
to penalize the larger singular values less and small singular
values more. Thus, we replace the conventional tensor nuclear
norm with the weighted one on Li:

L̂i = arg min
Li

1

σ2
i

||RiX −Li||2F + ||Li||w,∗. (8)

where ||Li||w,∗ =
∑
j |wjσj(Li)|1, w = [w1, . . . , wn] and wj

is a non-negative weight assigned to σj(Li). The intuitions
behind this weighted process are two-folds. On the one hand,
larger singular values corresponding to the major projection
orientations should be penalized less to preserve the major data
components. On the other hand, the success of the reweighting
strategy, where the regularization parameter is adaptive and
inversely proportional to the underlying signal magnitude, has
been verified in the various computer vision task [34], [69]. For
a small value after t iteration, due to the reweighted process in
sparsity constraint, it will enforce a larger reweighting factor
in the next t + 1 iteration, which would naturally result in a
sparser result. In this work, we set

wt+1
j =c

/(∣∣σtj(Li)
∣∣+ ε

)
, (9)
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(a) Original (b) Noisy (c) Shrink with fix parameter (d) Shrink with adaptive weight

Fig. 4: Effectiveness of the adaptive weighted strategy. (a)
Original clean image. (b) Simulated noisy image band 15
under Gaussian noise (sigma=30, PSNR = 18.59dB). (c)
Denoising result of the proposed method without adaptive
weighted strategy (PSNR = 41.27dB). (d) Denoising result of
the proposed method (PSNR = 41.85dB).

where c = 0.04 is a constant, and ε is a small constant to
avoid dividing by zero. In Fig. 4, we give a visual comparison
between LRTR model with/without the weighted strategy. The
result of Fig. 4(d) exhibits sharper edges than that of without
reweighted strategy, which demonstrates the effectiveness of
the sparsity reweight strategy in higher-order singular values.

3) Analytical solution of (8): By replacing Li in (8) with
the corresponding HOSVD, we obtain the following problem:

{Ŝi, Û1, Û2, Û3}= arg min
Si,U1,U2,U3

||RiX − Si×1U1×2U2×3U3||2F

+σ2
i ||wi ◦ Si||1, s.t. Uj

TUj = I, j = 1, 2, 3,
(10)

where ◦ denotes the element-wise multiplication, and j means
the mode index of a 3-order tensor. There are four variables
U1, U2 and U3 along with Si to be estimate iteratively.
I Update singular matrix Uj : Since the optimization of
U1, U2 and U3 are similar, we take the U1 as an example.
Dropping out the irrelevant variables from U1 in Eq. (10), we
can get the following subproblem:

Û1 = arg min
U1

T U1=I
||Ai − Si×1U1×2U2×3U3||2F , (11)

where Ai = RiX ∈ RI1×I2×I3 for simplicity, U1 ∈ RI1×r1 ,
U2 ∈ RI2×r2 and U3 ∈ RI3×r3 , we can transform the Eq. (11)
into the following matrix-vector product:

Û1 = arg min
U1

T U1=I
||vec(Ai)− (U3 ⊗ U2 ⊗ U1)vec(Si)||22, (12)

where ⊗ denotes the Kronecker product, and vec(·) is the
vectorization of the given variable. Since the U3 ⊗ U2 ⊗ U1

has orthonormal columns, we have vec(Si) = (U3 ⊗ U2 ⊗
U1)T vec(Ai) = (UT

3 ⊗ UT
2 ⊗ UT

1 )vec(Ai). Thus, we can
further obtain

Û1 = arg min
UT

1 U1=I
||(I− (U3 ⊗ U2 ⊗ U1)(UT

3 ⊗ UT
2 ⊗ UT

1 ))vec(Ai)||22. (13)

If Q = U3⊗U2⊗U1 has orthonormal columns then we have

||(I− QQT )vec(Ai)||22
= 〈vec(Ai), vec(Ai)〉 − 2

〈
vec(Ai),QQT vec(Ai)

〉
+
〈
QQT vec(Ai),QQT vec(Ai)

〉
= ||vec(Ai)||22 − ||QT vec(Ai)||22.

Thus, the minimization of problem Eq. (13) is equivalent to
the following maximization problem:

Û1 = arg max
U1

T U1=I
||(U3 ⊗ U2 ⊗ U1)T vec(Ai)||22. (14)

According to the following reshaping

||(U3 ⊗ U2 ⊗ U1)T vec(Ai)||22
= ||UT

1 A(1)(U3 ⊗ U2)||2F
= ||UT

2 A(2)(U3 ⊗ U1)||2F
= ||UT

3 A(3)(U2 ⊗ U1)||2F .

(15)

Thus, by assuming W = A(1)(U3 ⊗ U2), the objective
function in (14) can be rewritten as:

Û1 = arg max
U1

T U1=I
〈U1,W〉 . (16)

Assume that the singular value decomposition of W = PΣQT ,
thus we have

〈U1,W〉 = tr(UT
1 W) = tr(UT

1 PΣQT ) = tr(QTUT
1 PΣ). (17)

Since Q, U1 and P are both orthogonal, and Z = QTUT
1 P is

also orthogonal with each element |zij | ≤ 1,∀i, j. Thus,

tr(ZΣ) = z11σ1 + z22σ2 + · · ·+ znnσn

≤ |z11σ1 + z22σ2 + · · ·+ znnσn|
≤ |z11σ1|+ |z22σ2|+ · · ·+ |znnσn|
≤ |z11||σ1|+ |z22||σ2|+ · · ·+ |znn||σn|
≤ |σ1|+ |σ2|+ · · ·+ |σn|
= σ1 + σ2 + · · ·+ σn.

(18)

The equality is achieved when there exists z11 = z22 =
. . . = znn = 1. That is to say Z is the identity matrix.
Therefore, we can obtain U1 = PQT . Similar optimization
procedures are performed on U2 and U3. The reference [25]
has also provided a solution to the optimize U1, U2 and U3

via the von Neumann’s trace inequality for the matrix [70].
The interested reader could refer to the details in [25].
I Update core tensor Si: By ignoring terms independent of
core tensor Si in Eq. (10), we obtain following subproblem:

Ŝi = arg min
Si

||RiX − Si×1U1×2U2×3U3||2F + σ2
i ||wi ◦ Si||1. (19)

We follow the technique in [25] where ||Si × U||2F =
||Si||2F , ∀ UTU = I. That is to say, the product of a tensor by
the columns orthogonal matrix does not change the strength
of the signal. Therefore, we can obtain

Ŝi = arg min
Si

||Si −Oi||2F + σ2
i ||wi ◦ Si||1, (20)

where Oi = (RiX )×1UT
1×2UT

2×3UT
3 is for simplicity.

Assume that each coefficient in the core tensor as sijk and
oijk, respectively, the problem (20) can be converted into the
scalar format. Since the singular value in the HOSVD could
be either negative or positive, we first consider the situation
that sijk ≥ 0:

min
sijk

(sijk − oijk)
2

+ σ2
i |wijksijk|

⇔ min
sijk

(sijk − oijk)
2

+ σ2
iwijksijk

⇔ min
sijk

(
sijk −

(
oijk − σ2

iwijk

2

))2
.

(21)

It is easy to derive its closed-form solution as:

sijk = max
(
oijk − σ2

iwijk/2, 0
)
. (22)
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Fig. 5: Illustration of HSI stripe mode-1 unfolding. (a) Original
HSI cubic with vertical stripe; (b) Mode-1 unfolding matrix.

Furthermore, we incorporate the condition sijk < 0 into
consideration, we can obtain the final solution:

Si = sign(Oi)max(|Oi| − wiσ
2
i /2, 0). (23)

The variables U1,U2,U3, and Si have been updated alter-
nately with closed-form solutions. The main procedure of the
alternating minimization of each variable is similar to [25].
It is worth noting that, the Eq. (8) is very similar to that of
the 2D WNNM [72], which employs the von Neuman’s Trace
inequality for matrix [70] to solve the problem. However,
the von Neuman’s Trace inequality for tensor [71] cannot be
directly applied to solve the Eq. (8). The von Neuman’s Trace
inequality holds for tensor with two additional conditions:
the diagonal condition and proportional condition. Interested
readers could refer to [71] for details. The diagonal condition
is satisfied from both theoretical viewpoint (Tucker decom-
position can be regarded as a special case of block term
decomposition (BTD)) and experimental viewpoint (Fig. 2).
As for the proportional condition, such a strong assumption
can not be easily satisfied in HSI. The exploration toward the
unified optimization for both the 2D and higher-order WNNM
would be an interested topic.

IV. HSI RESTORATION WITH WLRTR MODEL

A. WLRTR for HSI Denoising

For HSI denoising, we only consider the random noise N
with an identity tensor operator. Thus, by combining the data
fidelity term 1

2 ||Y −X ||2F with the WLRTR prior, the Eq. (3)
can be formulated as the following minimization problem:{

X̂ , Ŝi, Ûj

}
= arg min

X ,Si,Uj

1
2 ||Y −X ||2F+

η
∑
i

(
||RiX − Si×1U1×2U2×3U3||2F + σ2

i ||wi ◦ Si||1
)
.

(24)

The alternating minimization strategy is introduced to solve
(24). The closed-form solutions of Si and Uj related sub-
problems (10) have been analyzed. Thus, we can reconstruct
the whole image X by solving the following sub-problem:

X̂ = arg min
X

1
2 ||Y −X ||2F + η

∑
i ||RiX − Si×1U1×2U2×3U3||2F . (25)

Eq. (25) is a quadratic optimization problem admitting a
closed-form solution:

X = (I + η
∑
iRTi Ri)−1(Y + η

∑
i (RTi Si)×1U1×2U2×3U3), (26)

where η
∑
iRTi Ri denotes the number of over-

lapping cubics that cover the pixel location, and
η
∑
i (RTi Si)×1U1×2U2×3U3 means the sum value of

Algorithm 1 WLRTR for HSI denoising
Require: Noisy image Y
1: procedure DENOISING
2: Initialize: Set parameters η; X (1) = Y ;
3: for n=1:N do
4: Step1: Similar cubics grouping: low-rank Tensor;
5: for (Low-rank tensor approximation) i=1:I do
6: Step2: Update the weight using Eq. (9);
7: Step3: Solve Eq. (11) for the singular matrix Uj ;
8: Step4: Estimate the core tensor Si via Eq. (23);
9: end for

10: Step5: Reconstruct the whole image X via Eq.(26).
11: end for
Ensure: Clean image X

all overlapping reconstruction cubics that cover the pixel
location. Eq. (26) can be computed in tensor format efficiently.

After obtaining an improved estimate of the unknown
image, the low-rank tensor approximation can be updated
by Eq. (10). The updated Si and Uj are fed back to Eq.
(26) improving the estimate of X . Such process is iterated
until the convergence. The overall procedure is summarized
in Algorithm 1.

B. WLRTR-RPCA for HSI Destriping

In real HSI, there always exists system structural noise
such as stripe noise. The stripes in HSIs via push-broom
imaging spectrometer are always non-periodic, and arise from
the unstable detectors during a scanning cycle. Therefore, it is
natural for us to borrow the RPCA model [9] to accommodate
the sparse error component, mainly the stripe noise E . The
RPCA has shown its robustness in presence of the sparse error,
such as background subtraction [72], structure noise removal
[17], and face recognition under occlusion [73], since it has
taken the sparse error into consideration.

In this section, we extend the WLRTR to the WLRTR-
RPCA for stripe noise removal. For the image prior, we will
utilize the weighted low-rank tensor prior to model them.
While for the stripe noise with obviously directional character-
istic, as shown in Fig. 5, we argue the L2,1-norm with direction
discriminative ability is more appropriate than L1-norm. Since
L2,1-norm ||E||2,1 =

∑C
j=1

√∑R
i=1 (Eij)

2 encourages the inten-
sity of columns to be zero, the underlying assumption here is
that the corruptions are sample-specific, i.e., some data vectors
are corrupted and the others are clean, just corresponding to
the broken and intact detectors, respectively.

In this work, we extend the matrix L2,1-norm to its 3-order
tensor case ||E||2,1,1 =

∑B
k=1

∑C
j=1

√∑R
i=1 (Eijk)

2, and incorporate
it into the WLRTR model as follow:{

X̂ , Ê, Ŝi, Ûj

}
= arg min

X ,E,Si,Uj

1
2 ||Y −X − E||2F + ρ||E||2,1,1+

η
∑
i

(
||RiX − Si×1U1×2U2×3U3||2F + σ2

i ||wi ◦ Si||1
)
,

(27)

where ρ and η are the regularization parameters. The WLRTR-
RPCA model (27) is simple and easy to understand, in which
the local sparsity, non-local similarity, and spectral consistency
of the images are utilized via the tensor low-rank prior,
whereas the stripe noise is well depicted by the L2,1-norm,
so that the mixed random and stripe noise can be separated
from the images satisfactorily.
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Algorithm 2 WLRTR-RPCA for HSI destriping
Require: Noisy image Y
1: procedure DESTRIPING
2: Initialize: Set parameters η and ρ; X (1) = Y ;
3: for n=1:N do
4: Step 1: Update sparse error E by solving (28);
5: Step 2: Update clean image X by Algorithm 1.
6: end for

Ensure: Clean image X and stripe component E .

The procedures of estimation Si and X are similar with
the Algorithm 1. Here, we show how we estimate E . Once
Si and X have been estimated, we can estimate E by solving
the following sub-problem:

Ê = arg min
E

1

2
||Y −X − E||2F + ρ||E||2,1,1, (28)

It is hard to directly obtain the final result. However, we have
the following Lemma [74]: Let Q = [q1, q2, · · · , qi, · · · ] be
a given matrix and ‖•‖F be the Frobenius norm. If Ŵ is the
optimal solution of

Ŵ = arg min
W

1

2
‖W − Q‖2F + µ‖W‖2,1

then the i-th column of Ŵ is

Ŵ(:, i) =

{
‖qi‖−µ
‖qi‖

qi, ifµ ≤ ‖qi‖ ,
0, otherwise.

Thus, it is natural for us to unfold the tensors into the
matrix (tensor matricization) so that we can apply Lemma
directly. By unfolding of the tensors along mode-1, Eq. (28)
is converted into the equivalent problem

Ê(1) = arg min
E(1)

||Y(1) − X(1) − E(1)||
2
F + ρ||E(1)||2,1. (29)

The Eq. (29) can be solved efficiently via Lemma. It is worth
noting that we chose the mode-1 unfolding since only in
this way the resulting matrix still preserves the directional
characteristic [Fig. 5(b)], while mode-2 and mode-3 unfolding
may lose this property. After we obtain the sparse error matrix
Ê(1), we fold it into the tensor format. The overall procedure
is summarized in Algorithm 2.

C. WLRTR for HSI Deblurring

For HSI deblurring, we only consider the random noise N
with the blurring operator. Thus, by combining the data fidelity
term 1

2 ||Y−T (X )||2F with the WLRTR prior, the Eq. (3) can
be formulated as the following minimization problem:{

X̂ , Ŝi, Ûj

}
= arg min

X ,Si,Uj

1
2 ||Y −X ∗H||2F+

η
∑
i

(
||RiX − Si×1U1×2U2×3U3||2F + σ2

i ||wi ◦ Si||1
)
,

(30)

where ∗ denotes the convolution operator, and H is a linear
shift-invariant point spread function (PSF). Here, we do not
take the stripe noise component E into consideration. Joint
destriping and deblurring for HSI is another much harder
problem, which is out of the scope of this work. For the
problem (30), we employ the alternating direction method of

Algorithm 3 WLRTR for HSI deblurring
Require: Blurring image Y and PSF H
1: procedure DEBLURRING
2: Initialize: Set parameters η, α, δ; X (1) = Y ;
3: for n=1:N do
4: Step 1: Image deconvolution B by solving (31a);
5: Step 2: Image reconstruction X by solving (31b);
6: for (Low-rank tensor approximation) i=1:I do
7: Step 3: Update the weight using Eq. (9);
8: Step 4: Solve Eq. (31c)) for the singular matrix Uj ;
9: Step 5: Estimate Si by solving (31d);

10: end for
11: Step 6: Lagrangian multipliers update via (34);
12: end for
Ensure: Clean image X .

multipliers (ADMM) [68] by introducing auxiliary variable
B = X to decouple the fidelity from regularization term:

B̂ = arg min
B

1
2 ||Y −B ∗H||2F + α

2 ||B −X − J
α ||

2
F (31a)

X̂ = arg min
X

α
2 ||B −X − J

α ||
2
F + η

∑
i ||RiX − Si×1U1×2U2×3U3||2F (31b)

Ûj = arg min
Uj

T Uj=I
||RiX − Si×1U1×2U2×3U3||2F (31c)

Ŝi = arg min
Si

||RiX − Si×1U1×2U2×3U3||2F + σ2
i ||wi ◦ Si||1, (31d)

where J is the corresponding Lagrangian multiplier, and α is
a positive scalar. The Eq. (31a) performs the image deconvo-
lution, Eq. (31b) means the image denoising process, and Eq.
(31c) and (31d) denote the low-rank tensor approximation.

According to Plancherel’s theorem [75], the sum of the
square of a function equals the sum of the square of its Fourier
transform. In view of the convolution operator in Eq. (31a),
we operate in the frequency domain using 3-D fast Fourier
transforms (3-D FFT) to make the computation efficient. Thus,
we can transform the Eq. (31a) into the following:

ˆF(B) = arg min
F(B)

1
2 ||F(Y)−F(B) ◦ F(H)||2F + α

2 ||F(B)−F(X )−F(J
α )||2F .

(32)
The closed-form solution of Eq. (32) can be expressed as:

B̂ = F−1
(
F∗(H)◦F(Y)+αF(X )+F(J )

F∗(H)◦F(H)+αI

)
, (33)

where F , F∗ and F−1 denote the FFT operator, its conjugate
and its inverse, respectively. The solution of X in Eq. (31b)
can be calculated similar to that of Eq. (25), and the low-rank
tensor approximation Si and Uj can be updated by solving
Eq. (10). Finally, the Lagrangian multipliers and penalization
parameter are updated as follows:{

J k+1 = J k + α
(
X −Bk+1

)
αk+1 = δ · αk.

(34)

The overall procedure is summarized in Algorithm 3.

D. WLRTR for HSI Super-Resolution
For HSI super-resolution, we consider the random noise N

with both the blurring and downsampling in spatial domain Y ,
as well as downsampling in spectral domain Z . Thus, the Eq.
(3) can be formulated as the following minimization problem:{

X̂ , Ŝi, Ûj

}
= arg min

X ,Si,Uj

1
2 ||Y − Tsa(X )||2F + 1

2 ||Z − Tse(X )||2F

+η
∑
i

(
||RiX − Si×1U1×2U2×3U3||2F + σ2

i ||wi ◦ Si||1
)
.

(35)
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Algorithm 4 WLRTR for HSI super-resolution
Require:Spatial and spectral LR image {Y,Z}, PSF H
1: procedure SUPER-RESOLUTION
2: Initialize: η, β, γ, δ; X (1) =↑upsampling (Y);
3: for n=1:N do
4: Step 1: Spatial SR Q by solving (36a);
5: Step 2: Spectral SR G by solving (36b);
6: Step 3: Image reconstruction X by solving (36c);
7: for (Low-rank tensor approximation) i=1:I do
8: Step 4: Update the weight using Eq. (9);
9: Step 5: Solve Eq. (36d)) for the singular matrix Uj ;

10: Step 6: Estimate Si by solving (36e);
11: end for
12: Step 7: Lagrangian multipliers update via (39);
13: end for
Ensure: Clean image X .

Since the variable splitting methods could separate each
term with physical meanings, for the problem HSI super-
resolution with both spatial and spectral degradations, we also
employ the ADMM [68] by introducing two auxiliary variables
Q = X and G = X to decouple the two data fidelity terms
from the regularization term as follow:

Q̂ = arg min
Q

1
2 ||Y − Tsa(Q)||2F + β

2 ||Q−X − J 1

β ||
2
F (36a)

Ĝ = arg min
G

1
2 ||Z − Tse(G)||2F + γ

2 ||G −X − J 2

γ ||
2
F (36b)

X̂ = arg min
X

η
∑
i ||RiX − Si×1U1×2U2×3U3||2F

+β
2 ||Q−X − J 1

β ||
2
F + γ

2 ||G −X − J 2

γ ||
2
F

(36c)

Ûj = arg min
Uj

T Uj=I
||RiX − Si×1U1×2U2×3U3||2F (36d)

Ŝi = arg min
Si

||RiX − Si×1U1×2U2×3U3||2F + σ2
i ||wi ◦ Si||1, (36e)

where J 1 and J 2 are the corresponding Lagrangian multipli-
ers, and α and β are positive scalars. The Eq. (36a) and Eq.
(36b) perform the HSI spatial and spectral super-resolution, re-
spectively, Eq. (36c) denotes the image reconstruction, and Eq.
(36d) and (36e) represent the low-rank tensor approximation.
Each subproblem has a closed-form solution. For Eq. (36a)
and Eq. (36b), the subproblems can be solved by computing:

Tcomp(Q) = T Tsa(Y) + βX + J 1, (37)

G×3(PTP + γI) = Z×3PT + γX + J 2, (38)

where Tcomp = T TsaTsa+βI is the composite operator on Q,
and T Tsa(Y) means the transposed blurring and downsampling
on Y . Since it is hard for us to calculate the Eq. (37) and
Eq. (38) directly, in our implementation, we unfold the 3-
D tensors along the mode-3 to the 2-D matrixes as [5]. The
solution of X in Eq. (36c) can be calculated similar to that
of Eq. (25), and the low-rank tensors Ŝi can be updated by
Eq. (10). Finally, the Lagrangian multipliers and penalization
parameter are updated as follows:

J 1
k+1 = J 1

k + β
(
X −Qk+1

)
J 2

k+1 = J 2
k + γ

(
X − Gk+1

)
βk+1 = δ · βk, γk+1 = δ · γk.

(39)

The overall procedure is summarized in Algorithm 4.

V. EXPERIMENTAL RESULTS

A. Experimental Setting
Benchmark Datasets. We test three HSIs datasets:
• Columbia Multispectral database (CAVE)1. The whole

dataset consisting of 32 noiseless hyperspectral images
of size 512×512×31 are captured with the wavelengths
in the range of 400-700 nm at an interval of 10 nm.

• Harvard hyperspectral datasets (HHD) [76]. The whole
dataset consisting of 50 noisy hyperspectral images of
size 1040×1392×31 are captured with the wavelengths
in the range of 420-720 nm at an interval of 10 nm.

• Remotely Sensed HSIs. Remotely sensed hyperspectral
datasets are also used, i.e. Salinas.

Pre-processing. First, before the restoration process, all the
original images were coded to an 8-bit scale for display
convenience and uniform parameter setting. Second, for the
non-local similarity cubic matching, we do not directly search
from the 3-D cubics in the noisy data. Instead, for reducing
computational load and matching accuracy, we proposed to
average each band of the cubic, which can be regarded
as a uniform filtering procedure, so that we can obtain a
quite clean 2-D matrix. Note that, the non-local similarity
matching processing is performing on this 2-D matrix, while
our restoration is still processing on the whole 3-D cubics.
Baselines. For the HSI denoising methods, we compare with
block-matching and 3D filtering (BM3D) [77], parallel factor
analysis (PARAFAC) [21], low-rank tensor approximation
(LRTA) [78], low-rank matrix recovery (LRMR) [10], adaptive
non-local means denoising (ANLM) [79], nonnegative matrix
factorization (NMF) [80], block-matching and 4D filtering
(BM4D) [39], tensor dictionary learning (TDL) [23], intrinsic
tensor sparsity regularization (ITSReg) [25], hyper-laplacian
regularized low-rank tensor (LLRT) [27], and total variation
regularized low-rank tensor decomposition (LRTDTV) [50];
for HSI deblurring, the competing methods include single
image based hyper-Laplacian (HL) [81], and HSI deblurring
methods fast positive deconvolution (FPD) [55] and spectral-
spatial total variation (SSTV) [56]; for HSI super-resolution,
we compare with coupled nonnegative matrix factorization
(CNMF) [61], non-negative structured sparse representation
(NSSR) [5] and non-local sparse tensor factorization (NLSTF)
[32].

We use the codes provided by the authors or downloaded
from their homepages, and fine-tune the parameters by de-
fault or follow the rules in their papers to achieve the best
performance. And the Matlab code of our methods can be
downloaded from the homepage of the author2. For parameter
settings of our method, the most important parameter is the
number of non-local cubics, which is set between [100, 200] in
correspondence with the noise level, respectively. The patch
size is between [6, 8]. And another important factor is the
regularization parameter η for HSI deblurring and super-
resolution, which is set as 10−8 and 10−5, respectively.
Evaluation Indexes. Four quantitative quality indexes are
employed [23], including peak signal-to-noise ratio (PSNR),

1http://www.cs.columbia.edu/CAVE/databases/multispectral/
2http://www.escience.cn/people/changyi/index.html
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TABLE I: Quantitative results of different methods under several noise levels on CAVE dataset.

σ2 Index
Methods

Noisy BM3D PARAFAC LRTA LRMR ANLM LRTDTV NMF BM4D TDL ITSReg LLRT WLRTR

10

PSNR 28.13 42.09 35.43 41.36 39.27 41.52 40.90 43.15 44.59 44.30 45.77 46.67 46.85
SSIM 0.4371 0.9665 0.8767 0.9499 0.9094 0.9576 0.9510 0.9702 0.9784 0.9797 0.9802 0.9872 0.9873

ERGAS 236.40 45.06 108.37 49.53 64.81 47.78 57.97 39.65 33.33 34.86 30.53 26.74 25.91
SAM 0.7199 0.1395 0.2360 0.1719 0.3343 0.2184 0.1519 0.1358 0.1295 0.1025 0.1086 0.0841 0.0863

20

PSNR 22.11 38.46 34.53 38.04 34.38 37.42 39.51 39.02 41.02 41.06 42.54 43.51 43.67
SSIM 0.1816 0.9339 0.8574 0.9119 0.7807 0.8936 0.9380 0.9169 0.9550 0.9638 0.9650 0.9767 0.9769

ERGAS 472.88 68.38 115.81 72.16 113.47 76.15 65.06 63.61 50.38 50.47 44.12 38.82 37.64
SAM 0.9278 0.1984 0.2838 0.2139 0.5009 0.3358 0.1810 0.1946 0.1981 0.1284 0.1171 0.1042 0.1067

30

PSNR 18.59 36.40 33.59 36.15 31.36 34.77 37.79 36.53 38.90 39.03 40.51 41.55 41.68
SSIM 0.0988 0.9034 0.8261 0.8787 0.6451 0.8060 0.9115 0.8565 0.9277 0.9486 0.9488 0.9683 0.9666

ERGAS 709.29 88.29 128.07 91.40 157.65 104.95 76.53 86.25 65.38 63.54 53.05 48.20 47.36
SAM 1.0414 0.2489 0.3455 0.2479 0.6021 0.4376 0.2309 0.2465 0.2598 0.1520 0.1374 0.1192 0.1248

50

PSNR 14.15 32.66 30.22 32.44 26.67 30.74 34.64 31.98 35.96 36.42 37.75 38.93 39.06
SSIM 0.0432 0.8320 0.7051 0.7932 0.4000 0.6057 0.8226 0.7113 0.8666 0.9175 0.9271 0.9521 0.9457

ERGAS 1181.95 115.06 155.84 118.64 264.28 164.55 106.27 123.23 91.51 85.58 70.16 65.52 63.83
SAM 1.1741 0.2877 0.4460 0.2843 0.7534 0.5806 0.3537 0.3148 0.3575 0.2000 0.1619 0.1424 0.1580

100

PSNR 8.13 29.27 26.01 29.20 20.84 24.90 29.19 26.95 30.82 32.91 33.01 35.40 35.15
SSIM 0.0122 0.7460 0.4346 0.6945 0.1850 0.2826 0.5338 0.4643 0.6956 0.8344 0.8648 0.9143 0.8876

ERGAS 2364.05 171.94 253.70 175.91 469.26 324.48 195.38 225.55 141.18 128.22 120.77 98.91 100.44
SAM 1.3271 0.3938 0.6843 0.3381 0.9306 0.7972 0.5986 0.4321 0.5014 0.3079 0.2376 0.1895 0.2300

(a) Original Image (b) Noisy Image (d) LRTA(c) BM3D

(l) WLRTR(h) BM4D (i) TDL(g) NMF

(e) LRMR

(j) ITSReg

(PSNR, SSIM) (18.59, 0.0988) (33.98, 0.9055) (33.87, 0.8535) (31.60, 0.6904)

(35.72, 0.8632) (37.63, 0.9379) (37.07, 0.9334) (39.36, 0.9566) (40.51, 0.9718)
(k) LLRT

(40.06, 0.9739)

(f) LRTDTV
(35.46, 0.9191)

Fig. 6: Simulated random noise removal results under noise level σ2 = 30 on CAVE dataset. (a) Original image toy at band
510 nm. (b) Noisy image. Denoising results by (c) BM3D, (d) LRTA, (e) LRMR, (f) LRTDTV, (g) NMF, (h) BM4D, (i) TDL,
(j) ITSReg, (k) LLRT, and (l) WLRTR.

(a) Noisy (b) BM3D (c) PARAFAC (d) LRTA (f) LRTDTV

(j) ITSReg(g) NMF (i) TDL(h) BM4D (l) WLRTR

(e) ANLM

(k) LLRT

Fig. 7: Real random noise removal results on HHD dataset. (a) Noisy image. Denoising results by (b) BM3D, (c) PARAFAC,
(d) LRTA, (e) ANLM, (f) LRTDTV, (g) NMF, (h) BM4D, (i) TDL, (j) ITSReg, (k) LLRT, and (l) WLRTR.
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Fig. 8: PSNR values of each band of image toy under noise
level σ2 = 30 on CAVE dataset.

TABLE II: Quantitative results of the competing methods
under different blur levels on CAVE dataset.

Methods HL FPD SSTV DB-WLRTR
Gaussian (8*8, Sigma = 3)

PSNR 37.28 38.84 37.61 55.68
SSIM 0.9460 0.9617 0.9527 0.9979

ERGAS 83.88 68.48 80.91 9.9635
SAM 0.0676 0.0734 0.0658 0.0250

Gaussian (17*17, Sigma = 7)
PSNR 32.59 33.16 33.08 49.42
SSIM 0.8819 0.9114 0.8944 0.9926

ERGAS 137.14 125.11 129.84 20.87
SAM 0.1075 0.1163 0.0989 0.0439

structure similarity (SSIM), erreur relative globale adimension-
nelle de synthese (ERGAS) and spectral angle map (SAM).
The PSNR and SSIM evaluate the spatial quality, and the
ERGAS and SAM assess the spectral quality. The larger PSNR
and SSIM values are, the smaller ERGAS and SAM values are,
the better the restored images are.

B. HSI Denoising

To visually illustrate the denoising performance of WLRTR,
we choose two images toy of band 510nm under noise level
σ2 = 30, as shown in Fig. 6. In Fig. 6 (the green demarcated
window), we can clearly see from the enlarged region that
the proposed method has obtained clearer results, compared
with other competing methods. Moreover, looking at the red
demarcated window in Fig. 6, the proposed WLRTR is capable
of well reconstructing the tiny hair texture. We also test
the proposed WLRTR method on real noisy HSI. Since the
noise level is unknown for real noisy images, we adopted
an estimation method from [82] to estimate the noise level
beforehand. In Fig. 7, from the demarcated window, we can
observe that WLRTR method obtains smoother image with
clearer texture and line pattern. In summary, WLRTR has
obtained better performance in terms of noise suppression,
detail preserving, artifacts-free, visual pleasure and PSNR
value under different noise levels.

TABLE III: Quantitative results of the competing methods
under different downsampling cases on CAVE dataset.

Methods CNMF NLSTF NSSR SR-WLRTR
Gaussian (s = 8, 8*8, Sigma = 3)

PSNR 46.15 44.56 46.99 47.39
SSIM 0.9901 0.9816 0.9921 0.9931

ERGAS 35.15 41.89 30.21 29.26
SAM 0.0591 0.0961 0.0528 0.0500

Uniform (s = 8)
PSNR 46.49 45.00 47.51 47.57
SSIM 0.9909 0.9847 0.9931 0.9934

ERGAS 34.56 39.06 28.84 28.82
SAM 0.0568 0.0869 0.0512 0.0493

We also present the overall quantitative assessments of all
competing methods on CAVE in Table I. The highest PSNR
and SSIM values and lowest ERGAS and SAM values are
highlighted in bold. We have following observations. First,
WLRTR consistently achieves the best performance in four
assessments, which highly demonstrate the effectiveness of
WLRTR for HSIs. Second, for random noise in CAVE, with
the increase of noise level, the advantage of our method over
other methods becomes more obvious. We can observe that
the proposed method almost exceeds 4.3dB than BM4D at σ2

= 100. Furthermore, we plot the PSNR values of each band
of one single image toy in CAVE as an example, as shown
in Fig. 8. It can be observed that the PSNR values of all the
bands obtained by WLRTR are significantly higher than those
of the other methods.

C. HSI Deblurring

There are relative fewer researches paying attention to HSI
deblurring. We compare the proposed DB-WLRTR method
with single image-based deblurring method hyper-Laplacian
(HL) [81], and two HSI deblurring methods FPD [55] and
SSTV [56]. The CAVE dataset is used for the comparison
study. The Gaussian blur kernels with different sizes and
standard deviations are tested. We assume the point spread
function is known. From Table II, we can see that the proposed
DB-WLRTR has an overwhelming advantage over the other
methods under different Gaussian blur levels. The visual
comparisons of the deblurring methods are shown in Fig. 9,
from which we can see that the DB-WLRTR method produces
much cleaner and sharper image edges and textures than other
methods. It is noteworthy that the lost details, such as the text
and the artificial flower, can be well recovered by our method.

D. HSI Super-resolution

We also test the proposed SR-WLRTR model on HSI super-
resolution. The CAVE dataset is used for the comparison
study. Both the Gaussian and uniform blur are tested with
scaling factors s = 8. We compare the SR-WLRTR with
the representative state-of-the-art methods, including both the
matrix-based CNMF [61], NSSR [5] and tensor-based NLSTF
[32]. The quantitative results are shown in Table III. It can be
seen that the results of the proposed method are superior to
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(a) Original  Image (b) Degraded (c) HL (d) FPD (e) SSTV (f) DB-WLRTR

(PSNR, SSIM) 

(PSNR, SSIM) 

(40.97, 0.9793) (42.16, 0.9837) (41.23, 0.9818) (58.73, 0.9992) (35.79, 0.9613) 

(33.29, 0.8813) (35.16, 0.9177) (34.28, 0.9056) (48.69, 0.9940) (23.62, 0.4690) 
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Fig. 9: Simulated deblurring results under different blur levels on CAVE dataset. The first row shows the light blur case (8*8,
Sigma = 3), and second row displays the heavy blur case (17*17, Sigma = 7). (a) Original image at band 510 nm. (b) Degraded
image, Deblurring results by (c) HL, (d) FPD, (e) SSTV, and (f) DB-WLRTR.

(b) LR Image(a) Original Image (c) CNMF (e) NSSR (f) SR-WLRTR(d) NLSTF

(PSNR, SSIM) (46.57, 0.9894) (41.16, 0.9799) (48.22, 0.9940) (48.80, 0.9942)

Fig. 10: Simulated SR results on CAVE dataset. The first row shows the SR results. The second row is the corresponding error
map. From the first column to the last one is (a) Original image at band 700 nm, (b) Low-resolution image (s = 8, 8*8, Sigma
= 3), SR results by (c) CNMF, (d) NLSTF, (e)NSSR, and (f) SR-WLRTR.

the competing methods both the spatial and spectral aspects,
especially the Gaussian blur. One visual comparison results
at 700nm of the flower by all competing methods are shown
in Fig. 10. All the competing methods can well recover the
HR spatial structures of the scene, but the proposed method
achieves the smallest reconstruction errors, especially for the
sharp edges. In conclusion, compared with the matrix-based
methods, the SR-WLRTR could better preserve the spatial-
spectral structures with better recovering the spatial details
and less spectral distortion; compared with the tensor-based
methods NLSTF [32], the SR-WLRTR utilizes the low-rank
tensor prior in HSI, thus resulting in better visual pleasing
result, while there are obvious gridding artifacts in NLSTF.

E. HSI Destriping

In this section, we evaluate the WLRTR-RPCA model on
the very common mixed noise in HSIs: random noise and
stripe noise. We randomly added the stripe on HSI, and the
locations of the stripes between the neighbor bands were
different. It is worth noting that we do not know the location
of the stripes. Figure 11 displays the noise removal results
of the competing methods. It is obvious that there still exist
some residual stripes in Fig. 11(c)-(j), which means these
methods only work well for the random noise. In Fig. 11(l),
the stripes are perfectly removed, and the detailed structure
information in each image is well preserved without the
introduction of any noticeable artifacts. The quantitative mixed
noise removal results on both Salinas and Cuprite dataset are
reported in Table IV. It is worth noting that the NMoG obtains
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(a) Original (b) Noisy (c) BM3D (d) PARAFAC (e) LRMR (f) ANLM

(g) NMF (h) BM4D (i) TDL (j) ITSReg (k) NMoG (l) WLRTR-RPCA

(PSNR, SSIM) (18.84, 0.3616) (20.65, 0.3465) (20.99, 0.4110) (21.63, 0.5239) (25.12, 0.6259)

(21.87, 0.4383) (21.66, 0.4641) (21.52, 0.4989) (21.45, 0.4576) (31.73, 0.9178) (33.42, 0.9319)

Fig. 11: Simulated mixed noise removal results under extremely heavy mixed random and stripe noise on Cuprite dataset. (a)
Original image. (b) Noisy image. Denoising results by (c) BM3D, (d) PARAFAC, (e) LRMR, (f) ANLM, (g) NMF, (h) BM4D,
(i) TDL, (j) ITSReg, (k) NMoG, and (l) WLRTR-RPCA.

TABLE IV: Quantitative results of the competing methods
under mixed noises.

Salinas(512*217*20) Cuprite(200*200*89)
Method PSNR SSIM ERGAS SAM PSNR SSIM ERGAS SAM
Noisy 21.57 0.2706 185.21 0.1787 18.84 0.3616 258.22 0.1798
BM3D 29.16 0.7468 50.93 0.0288 20.65 0.3465 183.74 0.1341

PARAFAC 31.25 0.8220 66.52 0.0291 20.99 0.4110 178.00 0.1298
LRMR 35.28 0.8755 41.79 0.0276 21.63 0.5239 140.65 0.1157
ANLM 33.99 0.8704 42.40 0.0278 25.12 0.6259 102.21 0.0717
NMF 29.11 0.6781 35.30 0.0204 21.87 0.4383 165.51 0.1233

BM4D 36.18 0.9155 32.44 0.0198 21.66 0.4641 168.29 0.1255
TDL 38.80 0.9526 26.81 0.0117 21.52 0.4989 170.07 0.1271

ITSReg 33.32 0.8551 32.14 0.0234 21.45 0.4576 175.19 0.1313
NMoG 34.47 0.8773 38.64 0.0226 31.73 0.9178 120.54 0.1121

WLRT-RPCA 39.38 0.9594 23.30 0.0104 33.42 0.9319 75.74 0.0581

a very competitive restoration result with higher quantitative
value and better visual appearance. However, we can still
observe the residual stripe and random noise in the result of
NMoG. Moreover, the performance of NMoG heavily relies
on the bands of the input HSI. Overall, the proposed method
consistently obtains the best mixed noise removal results both
quantitatively and qualitatively.

F. Analysis and Discussion

1) Effectiveness of Reweight Strategy: Here, we give a com-
prehensive comparison between LRTR model with/without the
weighted strategy for different tasks, as shown in Table V. We
can observe that both the baseline LRTR and WLRTR have
significantly improved the restoration results. Moreover, the
restoration results of the weighted LRTR are better than those
of the LRTR, which validates the effectiveness of the weighted
strategy in the tensor sparsity modeling.

2) The Comparison of Each Scene: We have reported the
average results of all image scenes and all bands. For each
scene in CAVE, we further compute the average PSNR value
of all the competing methods under noise level σ = 50,
as shown in Fig. 13. Indeed, the proposed WLRTR does
not consistently outperform the LLRT for each image scene.
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Fig. 12: Effects of the numbers of bands and non-local cubics.

Interestingly, we find that the LLRT performs better at the
visually smoothed image scenes. However, for the image with
abundant texture, such as the cloth, the proposed method works
much better than that of the LLRT. This is reasonable since
that the WLRTR mainly utilizes the self-similarity in the HSI
from the global low-rank perspective, while the LLRT heavily
relies on the local gradient smooth.

3) Parameter Setting: The number of bands B and non-
local cubics K are two important parameters in the proposed
method. In Fig. 12, we show the changes of the PSNR in
CAVE with the different numbers of B and K, respectively.
From Fig. 12(a), we can observe that the denoising results
become gradually better with larger number of bands. It is
worth noting that the curve still grows up slowly in the end.
Normally, for a 512 × 512 × 31 images, it would cost about
23 minutes with MATLAB 2017a, on an Intel i7 CPU at 3.6
GHz, and 32-GB memory.

From Fig. 12(b), we can observe that the denoising results
become gradually better with larger number of bands. When
the number of the band is smaller than 100, the PSNR value
increases extremely fast. After the number of the band is larger
than 100, the growing speed of the curve becomes relatively
slow, and the PSNR value achieves its highest between 150
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Fig. 13: Quantitative PSNR value comparison under noise level σ2 = 50 on the dataset CAVE of each scene.

TABLE V: The effectiveness analysis of weighted strategy for
different HSI restoration tasks.

Method Index Denoising Inpainting Deblurring SR

Noisy

PSNR 22.10 12.13 25.46 –
SSIM 0.2352 0.3770 0.8051 –

ERGAS 324.91 1028.50 225.83 –
SAM 0.9336 1.1189 0.0877 –

LRTR

PSNR 42.61 43.75 53.83 40.25
SSIM 0.9795 0.9941 0.9984 0.9854

ERGAS 30.22 27.42 8.47 50.32
SAM 0.1161 0.0623 0.0260 0.1018

WLRTR

PSNR 42.81 44.31 55.39 40.47
SSIM 0.9817 0.9945 0.9989 0.9856

ERGAS 29.84 25.79 6.97 48.60
SAM 0.1110 0.0620 0.0228 0.1002

TABLE VI: Quantitative results of different methods under
several noise levels on BSD.

Sigma Index
Methods

Noisy LSCD CBM3D WLRTR

10
PSNR 28.13 33.85 35.90 35.91
SSIM 0.7020 0.9188 0.9501 0.9511

20
PSNR 22.17 30.26 31.85 31.94
SSIM 0.4580 0.8469 0.8923 0.8953

30
PSNR 18.58 28.22 29.69 29.87
SSIM 0.3223 0.7854 0.8402 0.8444

40
PSNR 16.08 27.00 28.10 28.47
SSIM 0.2388 0.7417 0.7872 0.7973

to 200. When the number of the band is larger than 230, the
performance of WLRTR even deteriorates a little. We suppose
it is due to the insufficient similarity between the target cubic
and searching ones. Therefore, in our work, we set the number
of non-local similarity cubics between 100 to 200.

4) Extension to Multispectral Image: Although WLRTR
is proposed for HSIs which possess dozens or hundreds of
continuous bands, it can be extended to multispectral images
with fewer bands, such as RGB color image. Most of the
previous color image processing methods usually handle the

RGB images in luminance space only or restore each channel
separately, while ignoring the spectral correlation across the
channel. On the contrary, the WLRTR jointly processes the
R, G and B channel. We compared WLRTR with WNNM
[72] which handles the color image in each channel, and color
image denoising methods: LSCD [83] and CBM3D [84]. The
PSNR and SSIM values on BSD are reported in Table VI. We
can conclude that the joint utilization of RGB in color image
really improves the denoising performance.

VI. CONCLUSION

In this paper, we have proposed a unified weighted low-
rank tensor recovery method for HSIs restoration. The pro-
posed WLRTR explicitly utilizes the spatial sparsity, non-local
spatial-spectral cubic redundancy, and spectral consistency via
higher-order low-rank property of each constructed 3-order
tensor. We overcome the barriers of classical HSIs restoration
methods that are not able to preserve the correlation of the
spatial-spectral structure and can only be applied to one
specific task. On one hand, we reveal the fact that tensor-
based sparsity model indeed fits for the HSIs processing; on
the other hand, thanks to the variable splitting methods, we
show that various HSIs restoration problem can be unified in
a framework, and transformed into several easier subproblems
with closed-form solution. Further, for the low-rank tensor
prior related subproblem, we introduce the weighted strategy
to improve the restoration performance, in which the closed-
form solutions have been analyzed. Besides, we consider the
very common stripe noise in HSIs, utilize its structural and
directional property, and extend WLRTR to the WLRTR-
RPCA model.

Extensive simulated and real experiment results have been
carried out against several state-of-the-art methods on various
HSIs restoration tasks. The proposed methods have consis-
tently outperformed state-of-the-art methods in both quanti-
tative assessments and visual appearance, especially in HSI
destriping, deblurring, and super-resolution domain, where few
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tensor based methods have been proposed. In future, we would
like to incorporate the learning-based tensor prior [85], [86]
into the optimization model for better HSI restoration.
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