
Robust destriping method with unidirectional 
total variation and framelet regularization 

Yi Chang,1 Houzhang Fang,1 Luxin Yan,* and Hai Liu 
Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, School of Automation, 

Huazhong University of Science and Technology, Wuhan, Hubei 430074, China 
1These authors contributed equally to this work. 

*yanluxin@gmail.com 

Abstract: Multidetector imaging systems often suffer from the problem of 
stripe noise and random noise, which greatly degrade the imaging quality. 
In this paper, we propose a variational destriping method that combines 
unidirectional total variation and framelet regularization. Total-variation-
based regularizations are considered effective in removing different kinds 
of stripe noise, and framelet regularization can efficiently preserve the 
detail information. In essence, these two regularizations are complementary 
to each other. Moreover, the proposed method can also efficiently suppress 
random noise. The split Bregman iteration method is employed to solve the 
resulting minimization problem. Comparative results demonstrate that the 
proposed method significantly outperforms state-of-the-art destriping 
methods on both qualitative and quantitative assessments. 
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1. Introduction 

Stripe noise commonly exists in multidetector imaging systems including the atomic force 
microscope (AFM) [1], passive millimeter-wave (PMMW) radio [2, 3], moderate resolution 
imaging spectroradiometer (MODIS) [4], and other such systems [5–7]. The main cause of 
stripe noise is the difference in the response of detectors, which severely limits the application 
of the resulting images. Therefore, it is critical to remove the stripes before the succeeding 
image interpretation processes are performed. 

Many destriping methods have been proposed [1–11]. The first kind of destriping 
approach employs digital filtering in the transform domain [7–10] and suppresses the specific 
frequency caused by stripes. However, structural information with the same frequency will 
also be removed along with the stripes, thereby leading to image blurring and artifacts. The 
second kind of destriping approach, which includes methods such as histogram matching and 
moment matching [4, 11], focuses on the statistical property of digital numbers (DN) for each 
detector. To remove the stripes, the distribution of stripes is rectified to a reference one. These 
matching-based methods are highly limited by the similarity assumption [4]. 

The third kind of destriping approach treats the destriping issue as an inverse problem. An 
energy functional is constructed by imposing regularized constraints, and subsequently, it is 
minimized to obtain destriping results [12–17]. The stripe is often modeled as an additive 
process [14–17] or as both multiplicative and additive process [12]. In most imaging systems, 
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Fig. 1. (a) Regular stripes in moderate resolution imaging spectroradiometer (MODIS) image. 
(b) Irregular stripes in focused ion beam nanotomography (FIB-nt). 

the degradation process contains both multiplicative and additive components, such as in the 
PMMW imaging system, and the push-broom imaging system [13]. In general, the stripes 
caused by the multiplicative component can be well calibrated [18, 19]. In this paper, the 
degradation process is described as 

 = + ,sI u n   (1) 

where Is represents the striped image, and u is the latent unstriped image. The stripe noise n 
includes regular stripes [Fig. 1(a)] with strictly horizontal or vertical direction characteristics 
and irregular stripes [Fig. 1(b)] (for e.g., a stripe that is not perfectly straight, or with an offset 
value that is not constant over the whole length). 

Stripe noise severely degrades the image quality, particularly the edge and detail 
information. The removal of stripe noise and preservation of edge and detail information is a 
very important and challenging problem. Total variation (TV) regularization is widely used 
due to its desirable properties such as convexity and the ability to preserve sharp edges [20–
 23]. Shen [12] firstly proposed a maximum-a-posteriori destriping method with a Huber–
Markov prior, which means that the prior term is an alternative between TV regularization 
and Tikhonov regularization. A similar prior was also utilized in [14]. In [15], the authors 
proposed a sophisticated unidirectional TV model to remove regular stripes, in which it is 
assumed that the gradients along the stripes are not affected by the stripes. TV regularization 
is considered effective in removing the stripes but it cannot satisfactorily preserve structural 
details, thereby leading to structural information loss and piecewise constant effects. 

Recently, framelet regularization has been employed in image restoration problems [ 24–
26], where it is assumed that natural images have sparse representation under the framelet 
transform. The framelet has the ability of multiresolution analysis in nature, and therefore, it 
can adaptively capture multiscale edge structures in images. As a result, various types of 
edges can be well-preserved by framelet regularization. In this study, we propose a joint 
unidirectional TV and framelet regularization method to address the destriping problem. Our 
method utilizes the sparsity of the images in both the gradient and framelet domains. To the 
best of our knowledge, our method is the first one that introduces framelet regularization to 
address destriping. The main ideas and contributions of the proposed approach are 
summarized as follows: 
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i) Unidirectional TV and framelet regularization are combined to address the destriping 
issue. The proposed method can effectively remove regular stripe noise with 
unidirectional TV regularization and preserve detail information via framelet 
regularization. 

ii) The proposed method works well not only on regular stripes, but it also has the ability 
to remove irregular stripes from different kinds of images. Moreover, it can suppress 
random noise as well. 

iii) The split Bregman algorithm is introduced to optimize the proposed model. The 
resulting optimization problem is split into several subproblems, which are very easy 
to implement. 

The remainder of this paper is organized as follows. In section 2, we formulate the 
proposed model and the optimization algorithm. The experimental results and discussions are 
presented in section 3. Section 4 presents our conclusions. 

2. Formulation and algorithm 

2.1 Problem formulation 

In this work, image destriping is formulated as an inverse problem by optimizing an energy 
functional including the data fidelity term and regularization term as follows: 

 min Φ( ) + λR( ),− su
u I u    (2) 

where Φ( )− su I  denotes the fidelity term, R( )u  denotes the regularization term for a clear 
image, and λ denotes the regularization parameter. 

We use the 2l -norm as the fidelity term and design the regularization term R(u) to remove 
the stripe noise as well as preserve the edges and detail information: 

 TV FRR( ) = R ( ) +ωR ( ).u u u     (3) 
We argue that the isotropic TV is inappropriate for destriping because stripes obviously 

have directional characteristics. To illustrate, in Fig. 2, we show the derivatives of the regular 
stripes along horizontal and vertical directions of a MODIS image. It can be seen clearly that 
the horizontal derivative [Fig. 2(b)] contains the most stripes, while the vertical derivative 
[Fig. 2(c)] has very few stripes. In other words, stripes greatly vary in terms of gradient across 
the stripe lines, while the gradient along the stripe lines is only slightly influenced. Therefore, 
we attempt to constrain the gradient across the stripe lines while preserving the gradient along 
the stripe lines. To this end, we use the unidirectional TV to exploit the directional 
characteristic [15]. A similarly motivated method was proposed by researchers previously [7]. 
They made use of the directional characteristic via wavelet decomposition, and subsequently, 
they employed Fourier filters to remove the stripes in specific bands. 

Thus, we formulate the unidirectional TV regularization as: 

 1 s 1( ) || || || ( ) || ,TV y xR τ=  + −u u u I ∇ ∇  (4) 

where τ denotes the parameter that balances the constraints across and along the stripes. The 
parameters y∇ and x∇ denote the vertical and horizontal derivative operators, respectively. In 

this work, we regard the direction along the stripes as the x-axis and the direction across the 
stripes as the y-axis. The functional (4) is intuitive. The first term penalizes the 1l -norm of the 

gradient across the stripes so as to remove the stripes while the second term enforces the 1l -
norm constraints on the difference between the gradient along the stripes of the desired and 
striped images, thereby aiming at preserving the gradient along the stripes as striped images. 
This approach is very reasonable since the stripes only slightly influence the gradient along 
the stripes. In fact, the second term of (4) is a regularity term for noise in its first order along 
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Fig. 2. (a) Striped image. (b) Horizontal derivative. (c) Vertical derivative. 

the x-axis, which actually is a fidelity term since it involves the difference between the 
restored image and the observed one. We place the two terms together to emphasize their 
advantage over the traditional isotropic TV in the destriping context. 

In [15], the authors used a unidirectional TV model to remove the stripes. However, a 
weakness of their model is that it places too large a constraint on the unidirectional derivative. 
As a result, irregular stripes that are not strictly vertical or horizontal will not be properly 
handled, as observed in the case of the waterfall effect in the focused ion beam 
nanotomography (FIB-nt) image [Fig. 1(b)]. Besides, structural information along the same 
direction as the stripes will also be removed together with the stripes. 

The unidirectional TV cannot properly preserve structural details, and it is unable to 
resolve issues such as the waterfall effect. Moreover, unidirectional TV cannot suppress 
random noise. In contrast, the use of the framelet can effectively address these problems. This 
is because large framelet coefficients occur wherever there are singularities such as edges and 
detail information. The framelet-based approach essentially keeps large framelet coefficients, 
and thus, it preserves edges and detail information [25]. In addition, framelet regularization 
can efficiently suppress Gaussian noise [25]. This motivates us to apply framelet 
regularization to destriping. Thus, we utilize the following regularization term: 

 
1

( ) ,FRR =u Wu  (5) 

where W represents the framelet transform using the filters of the framelet system. This 
framelet regularization term penalizes the 1l -norm of the framelet transform coefficients of 
the image u. In this work, we use the B-splines framelet. Further details on the theory and 
implementation on the framelet transform can be found in [26, 27]. Thus, the final energy 
functional about u is: 

 
2

1 2 312 11

1
min λ λ λ ( ) .

2 y x− + + ∇ + ∇ −s su
u I Wu u u I  (6) 

To simplify the notations used, we set the regularization parameters as 1 2 3λ , λ , λ  , 

respectively. The difficulties in determining u are that the 1l -norm terms are nonsmooth and 
nonseparable. The existing optimization methods, such as gradient descent, cannot be directly 
used. 

2.2 Numerical algorithm 

The split Bregman method [28] is an efficient tool to solve 1l -norm regularizations. The split 
Bregman iteration technique offers several advantages over conventional optimization 
methods. First, the iteration avoids the problem of numerical instabilities wherein 
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nondifferentiable points exist when using continuation methods, particularly for the 1l -norm. 
Second, the split Bregman iteration converges quickly with less memory usage, which makes 
it attractive for addressing large-scale problems and for real-time applications. 

The basic idea of split Bregman iteration is to convert the unconstrained minimization 
problem on u in (6) into a constrained one by introducing three auxiliary variables =d Wu , 

x x= ( )∇ − sd u I , and y y= ∇d u . The minimization (6) is equivalent to the constrained 

problem: 

 
2

1 2 y 3 x1 12 1

1
min λ λ λ s.t. = , ( ), .

2 x x y− + + + = − =s s yu
u I d d d d Wu d u I d u   ∇ ∇ (7) 

Subsequently, by strictly enforcing the constraints by applying the Bregman iteration, the 
problem (7) can further be transformed into a nonconstrained minimization: 

 
x y

2

1 2 y 3 x1 12 1

2 22

s2 22

1
min λ λ

2

( ) ,
2 2 2y y y x x x

− + λ + +

α β γ+ − − + − ∇ − + − ∇ − −

su,d,d ,d
u I d d d

d Wu b d u b d u I b

 (8) 

where α,β, γ  denote penalization parameters. This is the split Bregman iteration. Clearly, the 

minimizations of (8) with respect to x, ,u d d , and yd  can be decoupled, and thus, they can be 

further converted into four separate subminimization problems. 
• The u-related subproblem is given by 

 
2 2 22

s2 2 2 2

1 α
min ( ) ,

2 2u
u I d Wu b d u b d u I b

2
k k k k k k

s y y y x x x

β γ
− + − − + − ∇ − + − ∇ − −

2
 (9) 

which is a least-square problem. It is equivalent to the following linear system: 

 
1( )

( ) ( ) ( ) .

T T T k
y y x x

T k k T T T T k k
y y y x x x s x

+α + β∇ ∇ + γ∇ ∇ +

= α − + β∇ − + γ∇ + ∇ − + s

W W I u

W d b d b d I b I
 (10) 

It is to be noted that T =W W I , and (10) can be solved by the fast Fourier transform 
efficiently. 

• The d-related subproblem is 

 
21

1 1 2

α
min λ .

2
k k++ − −

d
d d Wu b  (11) 

The subproblem in (11) can be solved by using a shrinkage operator as follows: 

 1 1 1λ( , ),
α

k k kshrink+ += +d Wu b  (12) 

where 

 ( , ) max(r ,0).
r

shrink r
r

ξ = ∗ − ξ  (13) 

The shrink operator represents the soft thresholding method proposed in [29]. This shrinkage 
is extremely fast and requires only a few operations per element of d. 

Similarly, yd and xd  can be obtained as d  parallelly. Thus, d , yd and xd can be expressed 

as: 
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1 1 1

1 1 2

1 1 3

λ
( , ),

α
λ

( , ),
β

λ
( ) , ).

γ

k k k

k k k
y y y

k k k
x x s x

shrink

shrink

shrink

+ +

+ +

+ +


= +


 = ∇ +



= ∇ − +


d Wu b

d u b

d (u I b

 (14) 

Finally, we update the Bregman variables 1 1 1,  andk k k
y x

+ + +b b  b in the following manner: 

 

1 1 1

1 1 1

1 1 1

( ),

( ),

( ) ).

k k k k

k k k k
y y y y

k k k k
x x x s x

+ + +

+ + +

+ + +

 = + −


= + ∇ −
 = + ∇ − −

b b Wu d

b b u d

b b (u I d

 (15) 

Taking into account the above equations, we obtain the complete iteration used in our 
algorithm for destriping (see the section entitled Algorithm for a detail description). 

Algorithm Image destriping with sparsity regularizations

Input 0 su = I {Initialize 0u with the observed image sI } 

While (
1 1

max/k k k nd Na k+ + > ε <−u u u ) do 

Update 
k 1+u  by (10) 

Solve (14) for 
1 1 1,  ,k k k

y x
+ + +d d  d  

Update 
1 1 1,  andk k k

y x
+ + +b b  b by(15) 

end While 

Output: Destriping image = 
k 1+u  

3. Experiments and discussion 

In simulated experiments, an original 256 × 256 Lena image was used. The striped images 
were simulated by adding stripe lines to the original image. All the test images were 
normalized to [0, 1]. We compared the proposed algorithm with wavelet-Fourier combining 
filtering used in [7] (wavelet-FFT), the Huber regularization model used in [12] (Huber-Reg), 
the unidirectional TV algorithm used in [15] (Uni-TV), and the variational stationary noise 
remover algorithm used in [14] (VSNR). The wavelet-FFT algorithm implementation was 
kindly provided by Dr. Beat Münch [7]. 

In actual experiments, in order to test the proposed algorithm for different stripes, we 
selected four kinds of stripe images: a FIB-nt image, an AFM image, a PMMW image, and a 
MODIS image. Further, the actual images were normalized to [0, 1]. 

Certain qualitative and quantitative assessments were performed to provide an overall 
evaluation. The qualitative assessments included visual destriping performance and the 
calculation and comparison of the mean cross-track profile. The peak signal-to-noise ratio 
(PSNR) was used to measure the destriping quality for the simulated images. 

 10 210log ,
s

N
PSNR

 
=  

 − u I
 (16) 

where N denotes the total number of image pixels. Moreover, the non-referenced image 
quality Q-metric is used to evaluate the denoising performance [30]. For the two indices, the 
higher the value is, the better is the image quality. 
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Fig. 3. Simulated experiment with image containing severe stripes. (a) Original image. (b) 
Simulated striped image with severe additive stripes. Destriping results obtained using (c) 
wavelet-FFT, (d) Uni-TV, (e) proposed model without framelet regularization (FR) term, and 
(f) proposed algorithm. 

 

Fig. 4. Detail regions cropped from Fig. 3. 

Table 1. PSNR (dB) values for Lena image with severe stripes. 

Index Wavelet-FFT Uni-TV Without FR Proposed 
PSNR 24.97 30.49 33.02 33.31
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3.1 Simulation experiments 

Figure 3(a) shows the original selected image. The striped image, shown in Fig. 3(b), was 
obtained by adding eight successive stripe lines per ten lines. The magnitude of the stripes 
ranges from −40 to 40. From Fig. 3(c), it can be observed that the application of the wavelet-
FFT algorithm decreases the contrast. Figure 3(d) shows the destriping result obtained using 
Uni-TV, wherein certain features lying along the same direction as the stripes are degraded 
along with the stripes, such as the mouth and the shoulder. This is because the unidirectional 
TV approach lays emphasis on the smoothness of the images along a certain direction such 
that it tends to yield excessively destriped results. A similar phenomenon is also observed in 
Fig. 3(e), which is acquired by the proposed model without using the framelet regularization 
term. Obviously, a satisfactory result is achieved in Fig. 3(f) by the proposed algorithm. The 
stripes are effectively removed because of the presence of Uni-TV terms and the structural 
details are satisfactorily preserved due to the framelet regularization term. 

For convenience of comparison, the detail regions cropped from Fig. 3 are displayed in 
Fig. 4, wherein the images show abundant structural details. The wavelet-FFT method 
obviously decreases the contrast, as shown in Fig. 4(c). In Figs. 4(d)-4(e), it can be seen that 
the mouth and the eyelashes are badly corrupted. With the proposed algorithm, Fig. 4(f), the 
stripes are fully removed and the detail information is well-preserved. 

To demonstrate the method’s effectiveness in suppressing random noise, we performed a 
second simulated experiment. Figure 5(a) shows the striped image with additional Gaussian 
noise (σ = 8). The magnitudes of the stripe noise range from −40 to 40. These noise 
magnitudes are consistent with those that realistically occur in actual imaging systems such as 
the MODIS imaging system. We observe that the proposed method gives better restoration 
results when compared with those of other methods. In Fig. 5(i), not only are the stripes 
removed effectively but also random noise is well-suppressed. However, in Figs. 5(b)-5(e), 
we observe that the stripes have been removed while the Gaussian random noise still exists. 
That is, the abovementioned destriping methods are not able to satisfactorily suppress random 
noise in the destriping process. Figures 5(f)-5(h) show the results of wavelet shrinkage (WS) 
denoising [31] applied to the destriping results shown in Figs. 5(c)-5(e). It can be observed 
that the results obtained by the combined method (destriping + WS denoising) are not as 
smooth as those obtained with the proposed method. It is to be noted that the destriping result 
in Fig. 5(e) is achieved by the proposed model without the use of the framelet regularization 
term. Comparing Fig. 5(e) with Fig. 5(i), we can conclude that framelet regularization 
suppresses random noise substantially. 

The quantitative assessments are listed in Tables 1 and 2. Every result reported is an 
average over 5 trails for different realizations of noise. The mean and standard deviation of 
the PSNR value are denoted by M-PSNR and S-PSNR, and those of the Q-metric are denoted 
by M-Q-metric and S-Q-metric. It can be seen that the proposed algorithm consistently 
provides the best PSNR and Q-metric values for different levels of stripes and Gaussian 
noise. The simulated experiment results show that the proposed method significantly 
enhances the stripe-removal performance and random noise as well as perfectly preserving 
the structural details. 

3.2 Actual experiments 

3.2.1 Elimination of the waterfall effect in focused ion beam nanotomography imaging 

FIB-nt is a three-dimensional imaging technique with nanometric resolution, which uses dual 
(electron and ion) beam microscopy [32]. FIB-nt imaging often results in irregular stripes 
caused by the occurrence of material phases in the sample microstructure, namely the 
waterfall effects [33, 34], as shown in Fig. 6(a). This image was obtained from a previous 
study [7]. As mentioned in [7], waterfall effects are particularly challenging problems, since 
the stripes are not strictly horizontal or vertical. In addition, the stripes in FIB-nt images are 
distributed randomly. 
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Fig. 5. Simulated experiment using image with random noise. (a) Striped image with Gaussian 
noise. Destriping results obtained using (b) wavelet-FFT, (c) Uni-TV, (d) VSNR, (e) proposed 
model without framelet regularization (FR) term, (f) Uni-TV + wavelet shrinkage (WS), (g) 
VSNR + WS, (h) proposed model without framelet regularization (FR) term + WS, and (i) 
complete proposed method. 

Table 2. PSNR (dB) and Q-metric values for Lena image with stripes and random noise. 

Index 
Wavelet-

FFT 
Uni-
TV 

VSNR 
Without 

FR 
Uni-TV 
+ WS 

VSNR + 
WS 

Without 
FR + 
WS 

Proposed 

M-PSNR 27.48 27.84 32.90 32.32 28.20 33.57 32.94 34.22 
S-PSNR 0.16 0.10 0.02 0.04 0.09 0.02 0.04 0.03 

M-Q-metric 28.37 28.15 28.34 28.41 33.65 33.87 33.83 35.64 
S-Q-metric 0.31 0.35 0.29 0.30 0.20 0.15 0.17 0.14 

In Fig. 6(b), wherein the image was obtained by wavelet-FFT, although most of the stripes 
are eliminated, some residual stripes still exist. Moreover, the image contrast is decreased, 
which weakens the visual quality of the destriping image. In Fig. 6(c), although 
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Fig. 6. (a) Original FIB-nt striped image. Destriping results obtained using (b) wavelet-FFT, 
(c) Huber-Reg, (d) Uni-TV, (e) VSNR, and (f) proposed algorithm. 

 

Fig. 7. Mean cross-track profiles for images shown in Fig. 6. 

the stripes are completely removed, the detail information is severely degraded along with the 
removal of the stripes. From Fig. 6(d), we observe that the Uni-TV model can completely 
remove the exactly vertical stripes, but the waterfall effects still exist in the flat regions. This 
is because the Uni-TV model can only eliminate the stripes that are exactly horizontal or 
vertical. Figure 6(e) shows an image obtained via the VSNR method, which removes most of 
the waterfall effects, but some residual stripes can be observed in the flat regions. Obviously, 
the proposed method provides the best result with satisfactory visual quality. The framelet 
coefficients of the irregular stripes are effectively penalized by framelet regularization. 
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Fig. 8. (a) Original AFM striped image. Destriping results obtained using (b) wavelet-FFT, (c) 
Huber-Reg, (d) Uni-TV, (e) VSNR, and (f) proposed algorithm. 

 

Fig. 9. Mean cross-track profiles for images shown in Fig. 8. 

Consequently, irregular stripes are removed effectively. The stripes are perfectly removed 
without causing any noticeable artifacts, and the structural information belonging to the 
original FIB-nt image is well-preserved. This result shows that the proposed method is 
perfectly capable of removing irregular stripes while simultaneously preserving the structural 
detail. 

Figure 7 shows the mean cross-track profiles before and after destriping. The horizontal 
axis represents the column number, and the vertical axis represents the mean value of each 
column. The mean cross-track profile of the striped image fluctuates wildly because of the 
stripes, while that of the healthy image exhibits a somewhat smoother curve. From Fig. 7(b), 
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Fig. 10. (a) Original PMMW striped image. Destriping results obtained using (b) wavelet-FFT, 
(c) Huber-Reg, (d) Uni-TV, (e) VSNR, and (f) proposed algorithm. 

we note that the mean cross-track profile is fairy different from the original, which indicates a 
decrease in the image contrast. In Fig. 7(d), the mean cross-track profile is excessively 
smoothed to nearly a straight line. Such a result is not surprising as the Uni-TV model 
imposes excessive smoothness along one direction on the image. Figures 7(c), 7(e) and 7(f) 
all show satisfactory levels of smoothness. However, the image corresponding to Fig. 7(c) is 
excessively smoothed, and a considerable amount of detail information is lost, while Fig. 7(e) 
shows a few burrs, thereby indicating the presence of a few residual stripes. Figure 7(f) shows 
that the proposed method can achieve an acceptable tradeoff between stripe removal and 
detail preservation. This is primarily because the framelet essentially preserves various types 
of edges while unidirectional TV aspect of the method efficiently removes the stripes. 

3.2.2 Removal of non-uniform stripes and random noise in atomic force microscope 

AFM imaging belongs to the family of scanning probe microscopy (SPM) techniques [1]. 
Because of the great binding strength between the sample and the cantilever tip, stripes are 
generated by the protrusive disturbances, and they severely interfere with the tip vibrational 
modes. As illustrated in [1], these stripes vary in formation particularly in the areas wherein 
sample particles are densely packed. The stripes in AFM images vary with intensity, length, 
density, and frequency range, all of which exhibit non-uniform characteristics. It is worth 
noting that the AFM image in Fig. 8(a), which was used in [1], also contains a slight amount 
of random noise. 

In Fig. 8(b), the image that is subject to the wavelet-FFT method is free from the stripes, 
but it leads to loss of information, as indicated by the red mark. The Huber-Reg method 
applied to the image in Fig. 8(c) removes most of the stripes; however, the strong stripe 
artifacts can still be observed. Moreover, the detail information is unexpectedly degraded. 
From Fig. 8(d), it can be observed that the stripes are removed, but random noise still exists. 
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Fig. 11. (a) Original MODIS striped image. Destriping results obtained using (b) wavelet-FFT, 
(c) Huber-Reg, (d) Uni-TV, (e) VSNR, and (f) proposed algorithm. 

In Fig. 8(e), it is obvious that the destriping result obtained via the VSNR method exhibits 
random stripes. In Fig. 8(f), which image is the result of applied the proposed method, a more 
visually satisfactory result is achieved. The stripes are perfectly removed without causing any 
artifacts, and the structural information belonging to the original AFM is well-preserved. 
Furthermore, it can be observed that the proposed method is more effective in suppressing 
random noise. Figure 9 reflects the results observed in Fig. 8 in terms of the mean-track cross 
profiles of the destriping images. 

3.2.3 Removal of periodic and severe stripes in passive millimeter-wave images 

Passive millimeter-waves (PMMW) are less affected by adverse weather conditions such as 
cloud, smoke, fog, and dust [2]. However, PMMW images suffer from poor spatial resolution 
because of the long wavelength of millimeter waves. Further, the existing periodic and severe 
stripes deteriorate the imaging quality because of the non-uniform response of the receivers of 
the multidetector imaging system. The PMMW image used in this study was obtained from 
DERA Malvern [3]. 

In Fig. 10(b), wherein the image has been cleaned up using the wavelet-FFT method, most 
stripes are removed, but certain obvious residual stripes still exist and the information loss is 
severe. The Huber-Reg model does not work in eliminating very severe stripes, as observed 
from Fig. 10(c). The Uni-TV method removes the most noticeable stripes [Fig. 10(d)], while 
in Fig. 10(e), some residual stripes can be observed. The proposed method [Fig. 10(f)] 
provides a more visually pleasing result. The severe stripes are perfectly removed without 
causing noticeable artifacts, and the structural information is well-preserved. In addition, it is 
worth noting that the regions corrupted by the severe stripes have been well “inpainted” by 
the proposed method. 
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3.2.4 Removal of incomplete stripes in moderate resolution imaging spectroradiometer 

The MODIS imaging technique uses 36 spectral bands ranging from the visible (0.4 µm) to 
the long-wave-infrared (14.4 µm). MODIS has been used extensively in land, ocean, and 
atmospheric imaging; consequently, this has led to some remarkable advances in the earth 
sciences. We chose Terra MODIS level 1 B data for our study, which were downloaded from 
http://ladsweb.nascom.nasa.gov/. As shown in Fig. 11(a), some of the stripes in this image 
band 27 are incomplete, for instance in the dark regions of the image. 

In Fig. 11(b), the stripes are almost completely removed by the wavelet-FFT method, but 
the result exhibits information loss. In Fig. 11(c), obvious piecewise constant artifacts are 
observed. From Fig. 11(d), it can be observed that the stripes have been removed, while the 
information in the dark regions is unexpectedly degraded. With the VSNR method [Fig. 
11(e)], residual stripes in the bright regions can be seen. Although the stripes are mostly 
removed, some extra stripes are introduced in the dark regions. In Fig. 11(f), the stripes are 
perfectly removed without the introduction of noticeable artifacts. 

Overall, the results of the proposed method are consistent for all test images, and they 
exhibit good visually quality with fewer artifacts than the results obtained with the other 
methods. The stripes and random noise are significantly suppressed and the detail information 
is perfectly preserved by the proposed method, while the existing destriping methods more or 
less exhibit their limitations in handling different stripes. 

 

Fig. 12. Evolution of functional energy versus number of iterations for the proposed method. 

3.3 Convergence rate of the algorithm and parameter determination 

We investigated the convergence behavior of the proposed algorithm in the next phase of the 
study. Figure 12 illustrates the evolutional curve of the functional energy versus the iterations 
for the PMMW test, whose imaging results are shown in Fig. 10. It can be seen clearly that 
the proposed method achieves good convergence and converges after about 10 iterations. 

Moreover, in order to validate the robustness of the proposed method for the selection of 
regularization parameters, we performed a sensitivity analysis for the three regularization 
parameters for different stripe noise levels. Figure 13 shows the curve of PSNR values versus 
the different regularization parameters. In case 1, weak stripe noise (four stripe lines per ten 
lines) is added into the Lena image [Fig. 13(a)]. In case 2, severe stripe noise (eight stripe 
lines per ten lines) is added into the Lena image [Fig. 13(b)]. In Figs. 13(d)-13(e), it is clearly 
shown that the destriping results exhibit robustness despite variations in the parameters λ2 and 
λ3. We carried our testing using different noise levels for the parameter λ1, and we empirically 
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Fig. 13. (a) Image with weak stripe noise. (b) Image with severe stripe noise. (c)-(e) Curve of 
PSNR values versus parameters λ1, λ2, and λ3, respectively. 

determined that the best PSNR values are achieved when λ1∈ [3, 5], as shown in Fig. 13(c). 
There exists a global maximum in each PSNR curve when the parameter λ1 lies between 3 
and 5. Experimental results for other images show that these parameter ranges are universal. 

In our implementation, we empirically set the parameter ranging as λ1∈ [3, 5], λ2∈[0.1, 1], 
and λ3∈ [5, 10], and the corresponding Bregman parameter was set as α∈[10, 1000], β∈ [10, 
50], and γ∈[50, 100]. Parameter λ2 depends on the degree of the image stripe. Images with 
severe stripes require a larger value of λ2. Images with Gaussian noise require a larger value 
λ1. 

3.4. Limitation 

The aforementioned experiments indicate that the proposed algorithm is effective for 
removing additive stripes. However, for stripes which are mainly caused by the multiplicative 
component, the proposed additive model cannot be used. An alternative is to obtain the 
logarithm of the image before performing the destriping process to make the noise additive 
[13]. In addition, for FIB-nt and AFM images, there is not any physical model of the stripes, 
meaning that a more reasonable model can be proposed. This issue is an open problem. 
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4. Conclusion 

In this study, we proposed and implemented a new destriping method combining 
unidirectional total variation and framelet regularization. The method shows satisfactory 
robustness by exploiting the sparsity of the images in both the gradient and framelet domains, 
and it can completely remove different kinds of stripes while simultaneously satisfactorily 
preserving the structural details of the image. Not only could the regular stripes be completely 
removed by the proposed method, but the irregular stripes were also completely removed. 
Moreover, our method is also capable of suppressing random noise in imaging systems as 
opposed to many of the currently existing destriping techniques. The split Bregman iteration 
algorithm is introduced to solve the resulting minimization problem in order to reduce the 
normally large computation load. Once uk + 1 is obtained via (10), the three equations given by 
(14) can be computed parallelly. Subsequently, the three equations given by (15) can be also 
calculated parallelly, and this ease of the calculation makes the proposed method more 
preferable for practical application. The qualitative and quantitative assessment results 
demonstrate that the proposed method consistently outperforms the other methods for all test 
images. 

Although the parameter setting in our work is simple and does not involve rigorous 
tuning, it is preferable for use in certain applications wherein it is required to have a 
completely automatic parameter setting process. In future, we plan to incorporate optimal-
parameter-setting methods such as the generalized cross-validation techniques [35] into our 
method. 

Acknowledgment 

The authors would like to thank Dr. Beat Münch and Dr. Pierre Weiss for helpful discussions. 
This work is supported by the Fundamental Research Funds for the Central Universities, 
HUST: 2013TS131 and National Natural Science Foundation of China under Grant 
60902060. The authors would also like to thank the handling editor and anonymous reviewers 
for their valuable suggestions. 

 

#196612 - $15.00 USD Received 28 Aug 2013; revised 11 Sep 2013; accepted 11 Sep 2013; published 24 Sep 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.023307 | OPTICS EXPRESS  23323




