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Abstract

In this work, we focus on a very practical problem: image seg-
mentation under rain conditions. Image deraining is a clas-
sic low-level restoration task, while image segmentation is
a typical high-level understanding task. Most of the existing
methods intuitively employ the bottom-up paradigm by tak-
ing deraining as a preprocessing step for subsequent segmen-
tation. However, our statistical analysis indicates that not only
deraining would benefit segmentation (bottom-up), but also
segmentation would further improve deraining performance
(top-down) in turn. This motivates us to solve the rainy im-
age segmentation task within a novel top-down and bottom-
up unified paradigm, in which two sub-tasks are alternatively
performed and collaborated with each other. Specifically, the
bottom-up procedure yields both clearer images and rain-
robust features from both image and feature domains, so as to
ease the segmentation ambiguity caused by rain streaks. The
top-down procedure adopts semantics to adaptively guide the
restoration for different contents via a novel multi-path se-
mantic attentive module (SAM). Thus the deraining and seg-
mentation could boost the performance of each other coop-
eratively and progressively. Extensive experiments and abla-
tions demonstrate that the proposed method outperforms the
state-of-the-art on rainy image segmentation.

Introduction
The image deraining (Fu et al. 2020; Deng et al. 2020) and
segmentation (Zhang et al. 2018; Yang et al. 2018) have
made great progress during the past few years. The former
is a classic low-level restoration task, while the latter is a
typical high-level understanding task. Most of the previous
methods focus on one task and consider the two tasks sepa-
rately. However, there are fewer works considering the prac-
tical problem: image segmentation under rain conditions.

To solve this problem, the relationship between degrada-
tion and segmentation has been preliminarily studied. On
one hand, a number of works analyze the influence of vari-
ous degradations and their removal to high-level segmenta-
tion (Sakaridis, Dai, and Van Gool 2018; Pei et al. 2021). For
example, Kamann et al. (Kamann and Rother 2020) reached
a conclusion that segmentation models generalize well for
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Figure 1: Illustration of the proposed unified bottom-up and
top-down paradigm. The low-level deraining (including both
the image and feature domains) and high-level segmenta-
tion benefit from each other progressively, in which a better
deraining result facilitates better segmentation, meanwhile
a better segmentation offers better guidance for restoration.
Below is the visualization results of the image and feature
domain deraining, and segmentation in each iterative step.

image noise/blur, however, not with respect to weather cor-
ruptions. On the other hand, pioneer works introduce high-
level tasks to evaluate the low-level restoration. For exam-
ple, detection (Li et al. 2019) and recognition (Scheirer et al.
2020) are employed to evaluate deraining performance.

Consequently, the existing rainy image segmentation
methods can be mainly classified into three categories:
segmentation-oriented bottom-up methods, restoration-
oriented top-down methods, and multi-task parallel meth-
ods. The key idea of the bottom-up methods is to first get
rid of negative effects of the degradation, so as to improve
the feature discrimination for subsequent segmentation. The
degradation removal procedure can be explicit in image do-
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Figure 2: Comparison of existing rainy image segmentation techniques. R, S, C, and F represent rainy image, segmentation
prediction, clear image, and clean feature, respectively. Rather than focusing on unidirectional promotion for deraining or
segmentation, the proposed method considers unified bidirectional facilitation for both tasks via an iterative manner.

main (Sharma et al. 2018; Porav, Bruls, and Newman 2019;
Guo et al. 2020; Liu et al. 2020) [Fig. 2(a)] or implicit
in feature domain (Valada et al. 2017; Sakaridis, Dai, and
Van Gool 2020; Dai et al. 2020) [Fig. 2(b)]. On the con-
trary, the main goal of the top-town methods is to improve
the restoration performance with high-level semantic guid-
ance providing sufficient structural priors (Hu et al. 2019;
Ren et al. 2018; Zhang et al. 2021) [Fig. 2(c)]. The last one
of the multi-task parallel methods is capable of jointly re-
moving rain and understanding scenes with shared learning
mechanism (Zhang et al. 2020) [Fig. 2(d)].

Most of the previous methods either follow the bottom-up
paradigm or the top-down paradigm, which is only a uni-
directional promotion for deraining or segmentation. Few
of them (Valada et al. 2017; Zhang et al. 2020; Guo et al.
2020) have noticed a simple yet important problem that low-
level restoration and high-level segmentation could be mu-
tually promoted and tightly coupled. In this work, we first
analyze how rain influences segmentation, and discover that
less degradation brings less semantic ambiguity, so as to bet-
ter segmentation results. Then, we analyze how semantic in-
formation affects deraining, and prove that explicit semantic
prior plays an important role in promoting restoration. These
motivate us to bridge the gap between low-level deraining
and high-level segmentation within a unified bidirectional
bottom-up and top-down paradigm and propose the unified
bidirectional cooperation network (UBCN) [Fig. 2(e)].

Specifically, for the bottom-up stream, we propose to
eliminate the negative influence of rainy effect from both
image and feature-level instead of single perspective, where
both an image-level deraining module and a feature-level
domain adaptation module are designed for rain robust seg-
mentation. As for the top-down stream, we propose to ex-
plicitly embed the semantic information into the restoration
network via a novel multi-path semantic attentive module
(SAM) for learning spatial content-aware features to facili-
tate deraining. The two unidirectional streams are iteratively
fed into the other stream collaboratively. Consequently, a
better deraining result can be better represented by the net-
work, thus facilitating segmentation; meanwhile, better se-
mantic information can offer more structured semantic con-
straints in the solution space for better deraining, as shown
in Fig. 1. Overall, we summarize main contributions:
• Through statistical analysis, we prove that not only de-

raining would facilitate segmentation, but also segmenta-
tion would further improve deraining. Thus we propose

a unified bottom-up and top-down paradigm along with
the unified bidirectional cooperation network, consider-
ing bidirectional promotion between deraining and seg-
mentation in an iterative feedback manner.

• Compared with previous methods where only the im-
age or feature domain is utilized to eliminate rain effect
for segmentation, we propose a joint image- and feature-
level domain adaptation scheme, so as to better get rid of
the negative influence of rain in segmentation.

• We present a novel semantic attentive module by embed-
ding semantic prior into deraining networks to explicitly
learn content-aware features for adaptive restoration. Ex-
tensive experiments demonstrate the superiority of our
method both quantitatively and qualitatively.

Related Work
Image Deraining. Single image deraining has been widely
studied during past few years, including the optimization-
based methods (Kang, Lin, and Fu 2011; Chen and Hsu
2013; Luo, Xu, and Ji 2015; Li et al. 2016; Zhu et al. 2017;
Chang, Yan, and Zhong 2017) and the deep learning-based
methods (Fu et al. 2017; Zhang and Patel 2018; Li et al.
2018; Yasarla and Patel 2019; Yang et al. 2019; Zhu et al.
2019; Wang et al. 2019, 2020a; Yang et al. 2020). Most of
existing deraining methods mainly aim at visual appearance
and the quantitative PSNR/SSIM metrics. Recently, high-
level information has been taken into consideration for prac-
tical application. On one hand, researchers begin to take
high-level tasks, such as classification (Qian et al. 2018; Li,
Cheong, and Tan 2019), detection (Li et al. 2019), and seg-
mentation (Jiang et al. 2020) as the derain evaluation in-
dexes. On the other hand, high-level semantic knowledge
has been employed to guide deraining process in a top-down
manner (Xu et al. 2021). For example, Zhang et al. (Zhang
et al. 2020) generated segmentation map through a multi-
task framework to improve stereo deraining. Compared with
previous methods which utilize semantics with only con-
catenation operation, we make the utmost of spatial cues
provided by segmentation and propose a novel semantic at-
tentive module (SAM), explicitly adopting semantic priors
for adaptive restoration of different contents.
Semantic Segmentation. Although considerable progress
has been made in semantic segmentation, most of the exist-
ing methods mainly focus on degradation-free scenes (Chen
et al. 2018; Yu et al. 2020) and may encounter significant
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Figure 3: Influence of different rain levels on high-level seg-
mentation. We train the segmentation models on four rain
levels and show corresponding segmentation results.

performance drop when facing adverse weather. In recent
years, the influence of various degradations on segmentation
has been widely studied, such as rain (Porav et al. 2019),
haze (Sakaridis, Dai, and Van Gool 2018; Dai et al. 2020)
and low-illumination (Sakaridis, Dai, and Van Gool 2020).
To solve the degraded image segmentation, the researchers
mainly start from the bottom-up paradigm. The key idea
is first to get rid of the adverse effect of degradation in
image domain (Porav et al. 2019) or feature domain (Dai
et al. 2020; Sakaridis, Dai, and Van Gool 2020; Wang and
Zhang 2021), and then acquire better segmentation predic-
tion in clearer domain. For example, Porav et al. (Porav et
al. 2019) suppressed rain effects in image domain by explic-
itly restoring a clear image from the rainy one to improve
segmentation performance. Halder et al. (Halder, Lalonde,
and Charette 2019) eliminated rain in feature domain and
directly learned a robust feature representation for rain to fa-
cilitate segmentation. In this work, we propose to solve rainy
image segmentation from both image- and feature-domain,
so as to better get rid of the negative influence of the rain.

Low- and High-level Vision Interaction. Recently, explor-
ing the interaction between low- and high-level vision tasks
is drawing attention, e.g., joint image denoising and segmen-
tation (Liu et al. 2020), face image restoration and landmark
detection (Sun et al. 2019; Ma et al. 2020). One intuitive
way is to establish a pipeline framework to allow one task to
facilitate the other (Wang et al. 2016; Ren et al. 2018; Shen
et al. 2020; Liu et al. 2020; Sharma et al. 2018). Another
research line is to construct a parallel multi-task framework,
which treats the two tasks equally with two parallel branches
(Huang, Le, and Jaw 2021; Wang et al. 2020b). Unfortu-
nately, these unidirectional approaches have not fully taken
the interaction within different tasks. In fact, the collabora-
tive relationship has been explored in face restoration and
recognition. Zhang et al. (Zhang et al. 2011) presented a
joint blind face image restoration and recognition method
based on the sparse representation. Ma et al. (Ma et al. 2020)
proposed a joint face super-resolution and landmark detec-
tion network with iterative collaboration. In this work, we
concentrate on the task of joint image deraining and segmen-
tation within a unified top-down and bottom-up paradigm.
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Figure 4: The intrinsic discrepancy between different image
contents and their influences on deraining performance. (a)
and (b) visualize the t-SNE and entropy of typical patches,
respectively. (c) show deraining results for different patches.

Unified Bidirectional Cooperation Network
Relation between Deraining and Segmentation
In this section, we briefly analyze the mutual influence be-
tween low-level deraining and high-level segmentation.
Bottom-up: how rain degradation affects segmentation.
Intuitively, heavy rain may cause great impacts on segmen-
tation due to severe damage of image structures and content,
while light rain may cause slight effects. To quantitatively
analyze how rain affects segmentation, we evaluate the per-
formance of the segmentation model when applying differ-
ent rain levels images for training and testing. Specifically,
we synthesize four levels of rain (approximate 0, 50, 150,
250 mm/hr) on Cityscapes dataset and train four individual
segmentation models (Zhao et al. 2017), as shown in Fig.
3. Then, we test the four trained models on different testing
levels, corresponding to different color lines.

We have three key observations. First, the segmentation
results of all models decrease monotonically when the test
rain level increases. We can conclude that the lighter the
rain is, the better the segmentation result is. Second, the
best segmentation result for all cases is clean image train-
ing and clean image testing. That is to say, the clean image
is most discriminative for segmentation without any ambi-
guity caused by the artifacts. Third, the best segmentation
result for each rain level is always obtained only when the
training dataset and the testing dataset match. This suggests
that the segmentation model should be adaptively associ-
ated with the rainy dataset. The first two phenomenons in-
dicate that proper rain removal could indeed facilitate better
segmentation. The third motivates us that the segmentation
should be tightly coupled with the deraining, as so to well
accommodate different rain levels. In the next section, we
will introduce the details about how we construct the overall
network and how we get rid of rain effects for segmentation.
Top-down: how semantic facilitates deraining. Each im-
age contains abundant content, such as the textured tree,
smooth road, and sharp edges of the artificial buildings. That
is exactly the semantics that offers pixel-level category in-
formation about the content. Thus, we raise a question: how
does different content affect the deraining?



(a
) 

B
o
tt

o
m

-u
p
 S

tr
ea

m

Semantic Attentive Module

......Final Derian Image C

Building

Road

Vegetation

...

Restoration Loss

...

Expand

Derain Encoder Derain Decoder

Clear Encoder Clear Decoder

Discriminator

...

                 ~
Course Derian Image CRainy Image R

Derain Segmentation LossImage-level
Derain Module

Feature-level Adaptation Module

Clear Segmentation Loss

Groundtruth Image CGT Clear Segmentation SC 

Adversarial Loss

Derain Segmentation SD

ResBlock

Replaceable
Segmentation 

Block

Domain
Classifier

Category-specific Feature

Shared Deraining Feature

Data Flow Supervision

Point-wise Addition

Spatial-wise Multiplication

(b
) 

T
o
p
-d

o
w

n
 S

tr
ea

m

Restoration Loss

Channel-wise ConcatenationC

Rainy Image R

                 ~
Course Derian Image C

C

Figure 5: Overview of the proposed UBCN, which is mainly composed of two streams: (a) bottom-up stream for rain-robust
semantic representation and (b) top-down stream for adaptive image restoration. Given a rainy image, both image-level derain-
ing and feature-level adaptation are performed to get segmentation rid of rain. Then the obtained segmentation prediction is
utilized as explicit instructions for adaptive deraining on different semantic contents via semantic attentive module. Finally, the
top-down restoration and bottom-up segmentation are iteratively performed and collaborate with each other.

To answer this question, we first demonstrate that dif-
ferent contents have intrinsic low-dimensional manifolds.
We crop a number of 256 ∗ 256 patches from the original
2048 ∗ 1024 image in Cityscapes dataset. Each patch should
contain 95% of a certain category, such as fence, people, or
car. Here, we choose six categories as representatives. Then,
we perform t-SNE (Van der Maaten and Hinton 2008) on
these patches to visualize the two-dimensional distribution
of these patches. In Fig. 4(a), we can observe that all cate-
gories of the patches have been clustered distinctly. That is to
say, different contents have different feature representation.
Moreover, we calculate the mean entropy of each category to
measure the degree of randomness (complexity) in the patch.
In Fig. 4(b), we can observe that the entropy gradually de-
creases in terms of fence, people, car, terrain, road, and side-
walks. The t-SNE and entropy results verify that there exist
large discrepancies between different category patches.

Here, we analyze how these different category patches
affect deraining performance. We train six deraining mod-
els where each one is trained specifically on same category
patches, and also a hybrid model for mixed category patches.
The results are shown in Fig. 4(c). The result of category-
aware single model is consistently better than the hybrid
model, indicating that high-level category prior information
would definitely benefit low-level deraining. Moreover, it is
very interesting that the deraining results are inverse to the

entropy to each category: the more complex the semantic
patch is (higher entropy), the worse the deraining result is.

Overall, different category patches possess significant
variance on both visual appearance and intrinsic dimension,
which lead to different difficulties of deraining. We argue
that learning category-specific features can be beneficial to
the deraining. This motivates us to exploit high-level seman-
tic information to adaptively guide the low-level deraining.

Overall Architecture
As we have analyzed above, the deraining could indeed fa-
cilitate better segmentation, and on the contrary, semantic
information would be beneficial to deraining. To bridge the
gap between low-level deraining and high-level segmenta-
tion, we propose a unified bidirectional cooperation network
for joint image deraining and segmentation within a unified
bottom-up and top-down paradigm, as shown in Fig. 5. The
proposed UBCN is composed of two main streams within
a cycle: one bottom-up stream for rain-robust semantic rep-
resentation and one top-down stream for adaptive image de-
raining. In fact, we implement the cycle via an iterative man-
ner to perform the two streams alternatively and collabora-
tively. On one hand, bottom-up process greatly eases rain
degradation from both image- and feature-level to improve
segmentation. On the other hand, top-down processes ex-



ploit semantic prior to explicit guide adaptive deraining on
different semantic contents via semantic attentive module.
At last, each iteration takes the output from last iteration as
input, further improving results of both tasks.

Bottom-up: Joint Image & Feature Domain
The main goal of bottom-up methods is to get rid of rain ef-
fect in segmentation. Previous methods suppressed the rain
artifacts either in the image domain or the feature domain so
as to obtain rain-robust segmentation. Although the image-
domain deraining could better visually remove the rain, the
image details along with the corresponding discriminative
feature may inevitably be damaged. On the contrary, the
feature-domain adaptation method could well extract rainy-
robust representation without losing original information.

In this work, we propose a joint image and feature adap-
tation network in bottom-up stream, as shown in Fig. 5(a).
Specifically, explicit deraining is first performed via image-
level deraining module (22 Resblocks) with restoration loss:

Lresc = ||C̃− Cgt||2, (1)

where C̃ is the estimated derain image, Cgt is the clean im-
age. Although it is nearly impossible to eliminate all rain ef-
fects directly from image domain, the derain image is much
more similar to the clear one than the original rainy version.

Next, we design a feature-level adaptation module to en-
force that the derain image C̃ and clean image Cgt are also
indistinguishable in the feature domain with adversarial loss:

Ladv = log(1−D(Gde(C̃))) + log(D(Gce(Cgt))), (2)

where Gde and Gce are the encoder of the derain and clean
image, respectively, and D is the discriminator. Note that,
we employ the same encoder-decoder architecture for both
clean and derain images, while we do not share the same
weights for them. According to our experiment, the two
patches with different weights, which means flexibility and
representation, would have better performance.

Finally, after the decoder, we can obtain two segmentation
results and utilize cross-entropy loss for optimization:

LCSeg = −
∑

c S(c)
gt log(S

(c)
C ), (3)

LDSeg = −
∑

c S(c)
gt log(S

(c)
D ), (4)

where c is the number of class, SD, SC , Sgt is segmenta-
tion results of derain, clean, and GT, respectively. In fact,
each encoder-decoder is a segmentation network. Here we
employ well-known backbones PSPNet50 (Zhao et al. 2017)
and HRNet18 (Wang et al. 2021) as our replaceable segmen-
tation network. Overall, joint image and feature adaptation
would obtain satisfactory rain-robust segmentation results.

Top-down: Semantic Attentive Restoration
In the top-down stream, the high-level semantic information
can be used to adaptively guide the low-level deraining. The
key question is how to utilize the semantic properly. The
most common way is a concatenate operation (Ren et al.
2018) between input and semantic information due to same
spatial dimension. However, such straightforward operator
may not fully explore spatial cues provided by semantics.

In this work, we propose a novel semantic attentive mod-
ule to learn category-specific features in Fig. 5(b). The key
idea of SAM is divide and conquer. First, the input images
go through a set of residual blocks to extract shared feature
representation. Then the segmentation map is divided into
several paths with physical meaning attention to a certain
category. Each segmentation map is expanded to the same
size as the shared feature. These multi-patch shared features
are point-wise multiplied with the expanded attention maps.
Final, we fuse the divided feature to obtain derain image:

Ĉ =
∑C

c=1Fc(SDc ⊗ Fd(C̃,R)), (5)

where Fd and Fc are the feature extraction operators, SDc

is the semantic map of each category, ⊗ means the point-
wise multiplication, and Ĉ denotes the final deraining result.
Each divided path in SAM can learn category-specific fea-
ture representations, so as to adaptive deraining. In fact, the
SAM can be regarded as a refinement of the coarse deraining
results. The final deraining is still the restoration loss:

Lresf = ||Ĉ− Cgt||2. (6)

Implementation Details
Thus, the overall loss of the proposed UBCN is

Loverall = Lresc +λLadv +αLCSeg +βLCSeg +γLresf , (7)

where λ = 1e−3, α = 1, β = 1, γ = 10 are the hyper-
parameters. For different datasets, due to the different num-
ber of the category, the SAM would be slightly different. The
total number of the iteration step our UBCN is set to be 3.
As for network training, we adopt SGD with 0.9 momentum
as network optimizer and first pre-train image-level derain
subnetwork and feature-level adaptation segmentation sub-
network separately for 100 epochs with learning rate 1e-3
and 0.9 poly coefficient, and then fine-tune whole network
for 50 epochs with an initial learning rate 1e-5. Random crop
and mirror are utilized to perform data argumentation. We
adopt SGD with 0.9 momentum as network optimizer.

Difference between UBCN with Existing Works
Here, we further clarify the differences between UBCN with
existing works from following aspects. First of all, key ideas
of UBCN are very different from other methods. For ex-
ample, goal of PRRNet (Zhang et al. 2020) is image de-
raining only, with aid of semantic and stereo information
for unidirectional promotion. UBCN is the first to consider
synergy relationship to solve joint deraining and segmen-
tation problem, where each subtask is of equal importance
and benefits greatly from each other. As for overall net-
work architecture, previous methods all adopt unidirectional
pipeline for top-down segmentation→derain (Zhang et al.
2020) or bottom-up derain→segmentation (Wang and Zhang
2021). Instead, we propose the first unified bidirectional
cooperation network, considering bidirectional promotion
deraining↔segmentation in an iterative feedback manner.
Lastly, the methodologies of UBCN are different from other
methods. On one hand, previous deraining methods usu-
ally utilize semantics with simple concatenation (PRRNet),
while semantic attentive module is proposed to adaptively
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Figure 6: Visual comparison of rain removal and semantic segmentation results on Cityscapes dataset.

Methods
Low-level Metric + PSPNet + HRNet
PSNR SSIM mIoU PA mIoU PA

Rain 24.43 0.5652 71.08 95.05 61.48 93.85
DDN 33.66 0.9006 72.60 95.42 62.26 93.68

RESCAN 40.33 0.9712 73.70 95.66 65.70 94.36
PReNet 42.13 0.9823 75.03 95.82 67.87 94.24

JORDER-E 42.33 0.9778 76.01 95.74 67.99 94.72
RCDNet 42.85 0.9810 76.13 95.83 68.08 94.71

UBCN 43.22 0.9831 77.09 95.97 68.65 94.89

Table 1: Quantitative comparison results on Cityscapes.

Methods
Low-level Metric + PSPNet

PSNR SSIM mIoU PA

Rain 21.93 0.6617 80.23 95.29
DDN 26.17 0.7880 80.48 95.39

RESCAN 31.07 0.9006 82.31 95.93
PReNet 30.77 0.9100 82.77 96.07

JORDER-E 31.36 0.9124 82.80 96.06
RCDNet 31.03 0.9057 82.42 95.95

UBCN 32.18 0.9173 84.13 96.45

Table 2: Quantitative comparison results on VOC2012.

utilize semantic prior with physical meaning. On the other
hand, the previous methods usually obtain segmentation
from either derain image or rain-free feature domain (Wang
and Zhang 2021), while we propose to obtain accurate se-
mantic prediction from both image & feature domain via
image-level and feature-level adaptation module.

Experiments
Experimental Settings
We test the proposed methods on two widely used datasets:
Cityscapes (Cordts et al. 2016) and VOC2012 (Everingham
et al. 2015). We simulate rain via screen blend model (Luo,
Xu, and Ji 2015). The state-of-the-arts segmentation models
(Zhao et al. 2017; Wang et al. 2021) and deraining meth-
ods (Fu et al. 2017; Li et al. 2018; Ren et al. 2019; Yang
et al. 2019; Wang et al. 2020a) are employed for comparison.
They are combined to successively perform deraining and
segmentation. Note that all segmentation models are fine-
tuned with corresponding deraining methods for fair com-
parison. We employ PSNR and SSIM for deraining evalu-
ation, and pixel-wise mean intersection over union (mIoU)
and pixel accuracy (PA) for segmentation evaluation.

Methods PSNR SSIM mIoU PA
w/o SAM 41.81 0.9782 75.10 95.48
w/o ILD — — 71.08 95.05
w/o FLD 43.22 0.9831 76.81 95.93
UBCN 43.23 0.9831 77.09 95.97

Table 3: The effectiveness of each components in UBCN.

Step PSNR SSIM mIoU PA
1 38.86 0.9595 69.99 94.80
2 42.45 0.9789 73.98 95.71
3 43.23 0.9831 77.09 95.97

Table 4: Quantitative results of each iteration on Cityscapes.

Quantitative and Qualitative Evaluations
The quantitative results on Cityscapes and VOC2012 are
shown in Table 1 and Table 2, respectively. We can ob-
serve that UBCN consistently outperforms competing meth-
ods both on low-level restoration results and high-level
segmentation index by a large margin. Both PSNR value
and mIoU on different datasets have been significantly im-
proved, which strongly supports effectiveness of the pro-
posed unified bottom-up and top-down paradigm.

In Fig. 6, we show the visual deraining and segmenta-
tion results on Cityscapes. Due to space limitation, more re-
sults are shown in the supplementary. Although the compet-
ing methods can satisfactorily remove the rain, the proposed
UBCN can better preserve the subtle image structures such
as the fences and the wall of distant buildings. This phe-
nomenon could validate the effectiveness of the semantic in-
formation serving as efficient prior. Moreover, the segmen-
tation result of the UBCN is more structural and meaningful.

Ablation Study
The effectiveness of image- and feature-level deraining
for segmentation. In bottom-up stream, the key is to get rid
of negative effects of rain on segmentation. To demonstrate
the effectiveness of both image- and feature-level derain-
ing, in Table 3, we implement UBCN without image-level
deraining (ILD) and feature-level deraining (FLD). Without
ILD would cause a dramatic drop in segmentation (second
row). Without FLD, the performance would also slightly de-
crease (third row). The proposed UBCN learns rain-robust
representation from both image and feature domain, which
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Figure 7: Visualization of deraining results w/ or w/o SAM.
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Figure 8: The effectiveness of UBCN to improve the seman-
tic feature representation. We show the feature visualizations
of clear, rainy, and UBCN in different layers, respectively.

would better facilitate segmentation.
The effectiveness of high-level semantics for deraining.
In Table 3, we also conduct experiments to investigate the
influence of the proposed SAM and semantic information
for deraining. The proposed SAM greatly improves derain-
ing performance with 1.42dB in PSNR. Moreover, the seg-
mentation result is also improved in turn, due to the better
deraining results. In Fig. 7, we visualize the deraining re-
sults with or without SAM. The result with SAM is visually
pleasing with less rain residual and clearly sharp edges.
The effectiveness of unified bidirectional paradigm. To
verify iterative cooperation and refinement strategy in our
method, we analyze how deraining and segmentation results
change in each iteration. In Table 4, we can observe the per-
formance of both tasks getting better synchronously. Better
deraining would alleviate segmentation difficulty; accurate
semantic guidance would in turn facilitate deraining.

Discussion and Analysis
Visualization of the semantic features. To further verify
the effectiveness of image- and feature-level deraining in fa-
cilitating segmentation, in Fig. 8, we visualize the interme-
diate features in the segmentation network. From the top to
bottom row are the features extracted from clear, rain, and
derain images by UBCN. For clean image, the extracted fea-
ture is discriminative. On the contrary, the activation from
rainy image is quite noisy (Pool 1-2 layer) and less informa-
tive (Pool 3-5 layer), leading to obvious segmentation per-
formance drop. The features extracted from UBCN are very
similar to clear image features. This indicates that deraining
in image and feature domain indeed alleviates degradation
and promotes segmentation performance in rainy scenes.
Real-world image derain and segmentation. To further il-
lustrate the generalization of UBCN in real-world rain con-
ditions, we evaluate the performance of UBCN on the real-
world rainy images. We collect several real rainy images
on city road scene, which has less domain gap between the
real images and the Cityscapes. The model trained on the
Cityscapes dataset is directly employed for testing on the

RCDNet UBCNRealRain

Figure 9: Visualization of deraining and segmentation re-
sults on real-world rainy images.

Method PSNR SSIM mIoU PA
Image domain w/o FT 41.81 0.9782 75.10 95.48
Image domain w/ FT 42.10 0.9794 76.07 95.83

Feature domain adaption —– —– 72.64 95.38
UBCN 43.22 0.9831 76.81 95.93

Table 5: Different strategies for rainy image segmentation.

real rainy images. In Fig. 9, we show the real rainy image
deraining and segmentation results along with the results of
RCDNet. Interestingly, the UBCN can not only achieve sat-
isfactory deraining results but also good segmentation per-
formance compared with other methods. We believe that the
unsupervised domain adaption would be a good choice for
real-world rainy image segmentation in our future work.
The advantage of unified bidirectional paradigm. There
are several techniques introduced in Fig. 2 for rainy image
segmentation. Here, we compare the typical methods in Ta-
ble 5. We choose the bottom-up methods Liu et al. (Liu
et al. 2020) (image domain without fine-tune first row, with
fine-tune second row), feature domain adaptation methods
(Dai et al. 2020) (second row), and the proposed method
UBCN. We can observe that the unsupervised feature do-
main adaptation method is difficult to get rid of rain degra-
dation effect. The supervised image domain deraining strate-
gies could offer better deraining and segmentation results.
Compared with these unidirectional methods, our unified
bidirectional UBCN allows interaction between two tasks in
each iterative step cooperatively with better performance.

Conclusion
In this work, we aim at a very practical problem rainy image
segmentation. We first provide a comparison between ex-
isting unidirectional methods and the proposed bidirectional
paradigm. Then, we analyze how rain degradation influences
segmentation and how semantic information facilitates de-
raining. Based on these analysis, we propose a unified bidi-
rectional cooperation network within a unified bottom-up
and top-down paradigm. On one hand, image and feature do-
main adaption scheme is presented for better segmentation
in bottom-up stream; on the other hand, a novel SAM is de-
signed for physical meaning adaptive deraining in top-down
stream. The two streams are iteratively performed with mu-
tual promotion. Extensive experiments verify the superiority
of UBCN in both image deraining and segmentation.
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