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Toward Universal Stripe Removal Via
Wavelet-based Deep Convolutional Neural Network
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Abstract—Stripe noise from different remote-sensing imaging
systems varies considerably in terms of the response, length,
angle, and periodicity. Due to the complex distributions of
different stripes, the destriping results of previous methods tend
to be oversmoothed or contain residual stripe noise. To overcome
this key problem, we first provide a comprehensive analysis of
existing destriping methods and their scalabilities to different
types of stripe noise. We propose a deep convolutional neural
network (CNN) for fitting the complex distribution of stripe
noise. Previous methods only individually estimate the stripe
or the image. In our work, a two-stream CNN is designed to
simultaneously model the stripe and image components, which
better facilitates distinguishing them from each other. Moreover,
we incorporate the wavelet into our CNN model for better
directional feature representation. Therefore, the CNN learns the
discriminative representation from the external dataset, while the
wavelet models the internal directionality of the stripe, in which
both the internal and external priors are beneficial to destriping
task. In addition, the wavelet extracts the multiscale information
with a larger receptive field for global contextual information
modeling; thus, we can better distinguish the stripe from the
image component. The proposed method has been extensively
evaluated on a number of datasets and outperforms the state-
of-the-art methods by a substantially large margin in terms of
quantitative and qualitative assessments, speed, and robustness.

Index Terms—Destriping, convolutional neural network,
wavelet, image decomposition.

I. INTRODUCTION

REMOTE-sensing image stripe noise is mainly caused
by differences in the response of adjacent detectors.

Numerous research studies have been proposed to boost the
development of stripe removal in the past decades. In the
section, we will first provide a comprehensive and systematic
review of the previous destriping methods. Then, we will
analyze the remaining challenges in this field. Lastly, we will
provide our solution to solve these challenging issues.

A. Related Work

In Table I, we list most of the image destriping methods
and their main features. We mainly consider the year of
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publication, input, imaging system, utilization of the direction,
utilization of the image and stripe, and the speed. Next, we will
provide a brief description of each kind of destriping method.

1) Statistical Matching: The statistical matching methods
mainly include histogram matching and moment matching [1]–
[5] and were the dominant approach before 2000. The core
idea is to rectify the distribution of the stripe line to a clean
reference one. Thus, the success of statistical matching lies in
finding a clean reference. In 1979, Horn et al. proposed the
first histogram matching method for Landsat images destriping
[1]. To find a suitable reference line, Wegner et al. [2] implic-
itly considered the local smoothness of the image and proposed
to calculate the statistics only over homogeneous regions. This
approach is generally effective for specific imaging systems
in which only a portion them have fixed stripes, such as
the moderate resolution imaging spectroradiometer (MODIS).
However, it is difficult to find a reference for hyperspectral
images with ubiquitous stripes.

2) Digital Filtering: The filtering-based methods [6]–[19]
were active between 2000 and 2010, processing the stripes in
the transformed frequency domain instead of the original im-
age domain. They assume that the specific frequencies caused
by stripes are sparse and can be easily distinguished from
the image structures in the transformed domain. The stripe is
regarded as a special kind of ‘noise’, and the conventional
filters were introduced to suppress the stripes [7]. Later, the
directional property of the stripe was taken into consideration
via the wavelet [8], [13], [16]. We also regard the interpolation
methods [14], [15] as a median filter. Hybrid approaches
combining statistical matching with the filtering method have
been presented [10], [12], [18]. In our opinion, it is not suitable
to simply regard the stripe as ‘noise’ that is not identically
independent and contains significantly directional structure.

3) Variational Model: To explicitly utilize the sparsity in
the image, the variational-based destriping methods benefit
from the Lp optimization solver [20] and became dominant
after 2009. They treated the destriping issue as an ill-posed
inverse problem [21]–[34] and then optimized a variational
model incorporating sparsity priors about the image to ob-
tain the desired destriping results. In 2009, Shen et al.
[21] first proposed the Huber-Markov-based variational model
for remote-sensing image destriping within a maximum-a-
posteriori framework. These variational methods still took
the stripe as the isotropic ‘noise’, which fails to capture the
anisotropic property of the stripe. To model the directional
characteristic of the stripe, the sophisticated unidirectional
variation models have been extensively used in this field [24],
[27]–[34] and have achieved impressive performance.
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Figure 1. The category of the stripe noise. We classify the stripe noise in both the push-broom (representative hyperspectral imaging) and cross-track
(representative MODIS) from their appearances into sixteen classes. Their visual images are shown in the second row. Some statistical histograms of the
representative stripes are shown in the last row, which is very different for each stripe.

It is worth noting that most of the previous methods esti-
mated the clean image. As we know, the stripes contain regular
structures, which are easier to be estimated. Moreover, the
pixels in the stripe component are significantly less than that of
the image. Motivated by this, several works have estimated the
stripe component [23], [25], [30] with state-of-the-art single-
image destriping performance.

4) Low-Rank Matrix Recovery Model: Most of the previous
single-image-based methods may lose the spectral coherence
by processing each band individually. To remedy this issue, the
low-rank-based matrix recovery methods [35]–[45] have been
naturally proposed in recent years. They take advantage of the
low-rank property along the spectral mode by lexicographi-
cally ordering the 3D cubic into a 2D matrix [37]. To cooperate
with the global low-rank constraint, the local/nonlocal sparsity
regularizer has been additionally incorporated into the low-
rank model to further refine the restoration results [36], [38],
[40], [42], [45]. In contrast, Chang et al. [41], [43] exploited a
stronger low-rank property in the stripe component within an
image decomposition framework. We hold the viewpoint that
modeling both the image and the stripe component are useful
for their decoupling.

5) Low-Rank Tensor Recovery Model: Although the vector-
/matrix-based methods have achieved excellent destriping re-
sults, they inevitably cause damages to the spectral-spatial
structural correlation for the 3D inputs. To alleviate this issue,
the low-rank tensor recovery methods have emerged in the last
two years [46]–[52]. Some of them simply added up the ranks
(or its relaxations) along each tensor mode [46], [48], [51]. To
truthfully reflect the intrinsic difference of the structure cor-
relation along each mode, we proposed a unidirectional low-
rank tensor recovery model for multispectral image denoising
[47]. Compared with the previous methods, the low-rank-based

methods could better preserve the structure correlation and are
effective for both the stripe and random noises. However, the
speed of the low-rank tensor method is extremely slow due
to the large data size and the complicated operations, which
make them unsuitable for real-time applications.

6) Deep CNN Model: Previous methods constructed var-
ious handcrafted priors for the remote-sensing image and
stripe components. However, these handcrafted priors may
not be sufficiently discriminative to distinguish the stripe
from the image texture. In the last two years, discriminative-
based deep CNN models have been naturally proposed [53]–
[59]. The success of the deep CNN lies in the universal
approximation of the neural network [60]. Several nonuniform
stripe noise removal methods have been proposed for the
single infrared image with a shallow CNN model [53]–[55].
Later, the residual learning strategy along with the deep
CNN was introduced and achieved better performance [56]–
[59]. However, these discriminative methods only consider
learning from the external dataset while ignoring the internally
directional property of the stripe. Moreover, they neglect the
correlation between the image and stripe components.

B. Remaining Challenges

The destriping issue has been extensively studied over 40
years with very impressive results. However, there are still
several challenges need to be solved. In this section, we will
present two key challenges with a brief analysis.

1) Robustness: We have listed the robustness of some rep-
resentative destriping methods in Table II. The stripe category
will be presented in Section II. The previous methods are
designed for specific stripes with strong assumptions. For
example, the filtering-based methods utilized the periodicity
of the stripes [6], [10]. In addition, most of the variational
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Table I
A COMPARISON OF EXISTING DESTRIPING METHODS AND THEIR PROPERTIES.

Method Year Input Imaging Brief Description Direction Estimation Speed

Horn [1] 1979 Single Image Landsat MSS Histogram Matching No Image

Wegener [2] 1990 Single Image Landsat MSS Histogram Matching No Image

Corsini [3] 2000 Single Image MOS-B Moment Equalization No Image

Gadallah [4] 2000 Single Image Landsat TM Moment Matching No Image

Meza [5] 2016 Multispectral Hyperspectral Equalization No Image

Simpson [6] 1998 Single Image GOES-7 Finite Impulse Filters No Image

Chen [7] 2003 Single Image CMODIS Filtering No Image

Chen [8] 2006 Single Image CMODIS Wavelet+ FFT Yes Image

Liu [9] 2006 Single Image Landsat-7 FFT + Adaptive Filtering Yes Image

Rakwatin [10] 2007 Single Image MODIS Moment Matching + Facet Filtering No Image

Gómez [11] 2008 Multispectral CHRIS Filtering Yes Image

Rakwatin [12] 2009 Multispectral MODIS Band6 Moment Matching + Facet Filtering No Image

Münch [13] 2009 Single Image Medical Wavelet + FFT Yes Image

Wang [14] 2008 Multispectral MODIS Band6 Interpolation No Image

Jung [15] 2010 Multispectral SPOT4 Detection + Interpolation No Image

Chhetri [16] 2011 Single Image Hyperspectral Wavelet + FFT Yes Image

Gladkova [17] 2011 Multispectral MODIS Band6 Multivariate Regression No Image

Duan [18] 2014 Single Image Hyperspectral Reference Calibration + Filtering No Image

Cao [19] 2016 Single Image Infrared 1D Guided Filtering Yes Image

Shen [21] 2009 Single Image MODIS MAP Framework with Huber-Markov Prior No Image

Bisceglie [22] 2009 Single Image MODIS Least Squares Minimization No Image

Carfantan [23] 2010 Single Image SPOT3 MAP Framework with Markov field Prior No Stripe

Bouali [24] 2011 Single Image MODIS Unidirectional Variational Yes Image

Fehrenbach [25] 2012 Single Image Medical MAP Framework with Huber-Markov Prior Yes Stripe

Yuan [26] 2012 Multispectral Hyperspectral Spectral-spatial Adaptive Total Variation No Image

Chang [27] 2013 Single Image General Framelet + Unidirectional Variational Yes Image

Chang [28] 2014 Single Image General Sparse + Unidirectional Variation Yes Image

Chang [29] 2015 Multispectral General Anisotropic Spectral-Spatial Total Variation Yes Image

Liu [30] 2015 Single Image General Sparse + Unidirectional Variational Yes Stripe

Aggarwal [31] 2016 Multispectral Hyperspectral Spectral-spatial Total Variation No Image

Fitschen [32] 2017 Single Image Medical Framelet + Unidirectional Variational Yes Image

Liu [33] 2018 Single Image General Oriented Variational Yes Image

Liu [34] 2018 Single Image General Feature based Unidirectional Variational Yes Image

Acito [35] 2011 Multispectral Hyperspectral Orthogonal Subspace Learning No Stripe

Lu [36] 2013 Multispectral Hyperspectral Graph-regularized Low-rank Representation No Image

Zhang [37] 2014 Multispectral Hyperspectral Low-rank Matrix Recovery No Image

Zhao [38] 2015 Multispectral Hyperspectral Sparse + Low-rank Matrix Recovery No Image

Wang [39] 2016 Multispectral Hyperspectral Group Low-rank Representation No Image

He [40] 2016 Multispectral Hyperspectral Total variation based Low-rank Representation No Image

Chang [41] 2016 Multispectral General Low-rank Image Decomposition Yes Both

Chen [42] 2017 Single Image General Group Sparsity + Unidirectional Variational Yes Image

Chang [43] 2017 Single Image General Transformed Low-rank Matrix Recovery Yes Image

Chen [44] 2018 Multispectral Hyperspectral Low-rank Matrix Factorization No Image

Cao [45] 2018 Multispectral General Nonlocal TV + Low-rank Matrix Factorization Yes Image

Xie [46] 2016 Multispectral Hyperspectral Intrinsic Tensor Sparsity No Image

Chang [47] 2017 Multispectral Hyperspectral Unidirectional Low-rank Tensor Recovery No Image

Fan [48] 2017 Multispectral Hyperspectral Low-rank Tensor Recovery No Image

Chen [49] 2018 Multispectral Hyperspectral ASSTV + Low-rank Tensor Decomposition Yes Both

Cao [50] 2018 Multispectral Hyperspectral SSTV + Low-rank Tensor Recovery No Image

Fan [51] 2018 Multispectral Hyperspectral SSTV + Low-rank Tensor Recovery No Image

Wang [52] 2018 Multispectral Hyperspectral SSTV + Low-rank Tensor Decomposition No Image

Kuang [53] 2017 Single Image Infrared CNN No Image

He [54] 2018 Single Image Infrared CNN No Image

Xiao [55] 2018 Single Image Infrared Local-global CNN No Image

Xie [56] 2018 Multispectral Hyperspectral Residual Deep CNN No Stripe

Zhang [57] 2018 Multispectral Hyperspectral Spatial-spectral Gradient CNN No Stripe

Chang [58] 2019 Multispectral Hyperspectral Residual Deep CNN No Stripe

Chang [59] 2019 Single Image Infrared Multiscale Residual Deep CNN No Stripe
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Table II
AN EFFECTIVENESS COMPARISON OF REPRESENTATIVE DESTRIPING METHODS FOR DIFFERENT KINDS OF STRIPES.

Response Intensity Angle Proportion Length Periodicity Width Mixed Noise
Method Offset Gain Normal Deadline Vertical Oblique Some Entire Broken Full Yes No Single Broad Light Heavy

Gadallah [4]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Münch [13]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Carfantan [23]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Chang [29]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Liu [33]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Zhang [37]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Chang [41]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Wang [52]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Zhang [57]
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Proposed
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

methods assumed that the angle information of the stripe was
provided [24], [27]–[30], [32]–[34]. Most of the low-rank-
based methods exploited the spectral correlation, where this
property may be lost in a single image. Some methods as-
sumed that the stripe is intact with full length [23]. Therefore,
we can conclude that the previous methods are less effective
for all kinds of stripes. The main reason is that the distributions
of the various stripes are obviously different from each other,
as shown in the third row in Fig. 1. Precisely modeling these
distributions of the different stripes via an exact mathematical
formulation is difficult. Thus, the crucial factor for robust
destriping is determining how to model various stripes with
different distributions.

2) Discriminative: The previous destriping methods tend to
oversmooth the image structures or contain residual stripes, as
shown in Fig. 2. The conventional method WFAF [13] mainly
makes use of an internal handcrafted feature, such as the
wavelet. We can observe that there are obvious residual stripe
effects. In contrast, the deep learning-based method DLS-NUC
[54] only takes advantage of the external dataset. We can
observe that the image structure that has the same direction
as the stripe has been unexpectedly removed along with the
stripe, which may be less discriminative for the stripe and
sharp image edges. In addition, most of the previous methods
only extract the features of the image or the stripe component.
It is naturally understood that the joint representation of both
components is much more discriminative for separating them
[41]. Therefore, discovering how to jointly utilize the internal
and external features for both the image and stripe components
is also a key factor for better destriping.

C. Our Solution and Contribution
To contend with the first challenge, we propose implement-

ing the convolutional neural network for representing various
stripes. As observed in Fig. 1, the distributions of various
stripes are obviously different. Moreover, due to the structural
correlation of the stripe ‘noise’, the distributions are always
non-Gaussian, nonidentical, and nonindependent. Therefore, it
is difficult for the previous Gaussian or mixture of Gaussian-
based methods to fit these stripes precisely. We demonstrate
that the U-Net [61] can fit various distributions better than the
previous methods (Section III-A1). Moreover, to facilitate the
training, we enhance the U-Net with the residual block [62]
for better feature propagation and reuse (Section III-A2).

To address the second challenge, we argue that both the
learned discriminative features from the external dataset and
the handedcrafted discriminative features extracted from the
internal image are beneficial for stripe representation. We an-
alyze the relationship between the handcrafted-based wavelet
and learning-based CNN both experimentally and theoretically
(Section III-B1). The wavelet is an effective tool for modeling
the intrinsically directional characteristic of the stripe [13], the
multiscale representation of the image [28], and the lossless
decomposition and reconstruction [63]. Thus, we propose
embedding the wavelet into the end-to-end CNN network to
achieve better performance (Section III-B2).

In our previous work [41], we proposed to treat the de-
striping task from an image decomposition perspective, in
which these two components are treated equally and de-
coupled iteratively. Utilizing the discriminative features from
both components is beneficial for separating them. In this
work, we follow the decomposition idea and implement this
framework via a multitask learning-based two-stream CNN
(Section III-C1). The image stream aims at reconstructing
the clear image. The stripe stream focuses on extracting the
features of the stripe. The extracted features, including the
intensity, location, and angle, to name a few, function as an
attention map and are fed into the image stream to guide the
final reconstruction (Section III-C2).

In summary, we provide a comprehensive classification of
the remote-sensing stripes (Section II) and a brief property
survey of the existing destriping methods that can serve as
an elementary work for beginners in this field. Moreover, we
point out two major challenges in this field and propose a
preliminary solution for both of them. Our contributions can
be summarized as follows:
‚ We formulate the destriping issue as a discriminative multi-

task learning problem. The two-stream CNN jointly extracts
the image and stripe features interacting with each other,
which makes our method more representative for various
kinds of stripes with different distributions.

‚ To increase the discriminative ability, apart from the external
prior, we additionally utilize the internal prior via the
wavelet for extracting the intrinsically directional feature
in the stripe and the multiscale feature in the image.

‚ We have extensively evaluated our method on various
remote-sensing images with state-of-the-art performance in
both quantitative and qualitative assessments. Our method



5

WFAF (27.92, 0.9562) DLS-NUC (27.64, 0.9428) TSWEU (38.76, 0.9960)

Figure 2. The limitation of conventional methods. Residual stripe (WFAF)
and oversmooth (DLS) phenomenon can be observed in previous methods.

is effective for an arbitrary image with stripe noise.
In Section II, the category of stripe noise is analyzed.

The detailed architecture is described in Section III. The
experimental results and discussion are reported in Section
IV. Finally, we conclude the paper in Section V.

II. CATEGORY OF STRIPES

There are mainly two different remote-sensing image sys-
tems: push-broom and cross-track imaging. Moreover, the
striping effect has different appearances depending on the
scanning mechanism of imaging instruments. The interested
reader can refer to [29] for details. In this work, we provide
a more comprehensive classification of the stripes in remote-
sensing images, as shown in Fig. 1.

According to the detector response, the stripe can be
classified into an additive and a multiplicative type. The
additive stripe is signal-independent, while the multiplicative
stripe is signal-dependent. The intensity of the additive stripe
is normally constant along the stripe. The intensity of the
multiplicative stripe is highly associated with the image. That
is, the stripe is much darker in the low-intensity region, while
the stripe is brighter in the high-intensity region, which makes
the multiplicative stripe more difficult to remove. Most of
the previous methods focus on the additive stripe. Only [21],
[23], [41] have tried to handle the multiplicative stripe. It is
worth noting that the additive model can be well applied to
the multiplicative case by applying the logarithm, as in [23];
however, it may fail in the presence of both the additive and
multiplicative stripe.

According to the intensity, the stripe can be classified as a
normal or deadline stripe. The normal stripe has a common
intensity, while the intensity of the deadline stripe is all zeros.
The deadline stripes do not convey any useful information and
are caused by the failure of certain detectors. It is very difficult
for conventional denoising-based methods to reconstruct the
original image. Some methods resort to the spectral correlation
of the multispectral images [37]. In our opinion, the removal of
deadline stripes has been better treated as an image inpainting
task, as in [21].

According to the angle, the stripe can be divided into
vertical/horizontal and oblique groups. The stripe should be
horizontal or vertical, due to its imaging principle. However,

for the subsequent remote-sensing product, the geometric reg-
istration would cause the oblique stripe. Most of the previous
methods can only handle the vertical/horizontal stripe, espe-
cially the directional-based models [24], [41]. A natural idea
to process the oblique stripe is to transform it into the original
domain [43]. However, this may cause an information loss due
to the interpolation operator in the transformation. The recent
variational model [33] can only handle the fixed angle oblique
stripe, which limits its application in real settings.

According to the proportion, the stripe can be divided into
partial and entire groups. Generally, the partial proportion
stripe appears in the cross-track imaging system, and the entire
proportion stripe occurs in the push-broom imaging system.
The entire proportion stripe cannot be handled by the previous
statistical matching methods [1]–[5] since no clean reference
line can be found. Most of the presented destriping methods
can satisfactorily remove the partial proportion stripe due to
its simplicity.

According to the length, the stripe can be classified as
a full or broken stripe. For the full-length stripe, it can be
postprocessed via the feature of its length. The broken stripe
means that each stripe line may possess an arbitrary length.
This would make it difficult to distinguish the stripe from the
line pattern of the image structure. Moreover, the line pattern
structure would be unexpectedly removed by the unsupervised
methods along with the stripe. This validates that we need
to extract discriminative features or utilize the contextual
information to assist removing the stripe and preserving the
image structure.

According to the periodicity, the stripe can be classified
as a periodical or nonperiodical stripe. The periodical stripe
only appears in the cross-track imaging system due to its
imaging mechanism. The periodical stripe can be identified
by the specific spectrum in the frequency domain, which has
been well handled by the filtering methods [6]–[19]. The
nonperiodical stripe mainly occurs in the push-broom imaging
system. Compared with the periodical stripe, the nonperiodical
would inevitably damage the low-rank property or sparsity in
the image. Generally, the nonperiodical stripe is much more
difficult to remove [41].

According to the width, the stripe can be divided into the
single and broad stripe. The single-width stripe can be well
removed by the previous methods due to its simplicity. When
a broad stripe exists, the performance of single-image-based
methods would degenerate rapidly, especially smoothness-
based methods [10], [19], [21]. It is worth noting that the
width and the proportion are very close but are not the same.
Here, a broad stripe means that several adjacent stripe lines
have similar intensities, which makes these stripes extremely
difficult to remove.

Normally, a stripe coexists with random noise in remote-
sensing images. The mixed random noise and structural stripe
make the distribution of the noise complicated; therefore, sim-
ply modeling with the Gaussian or the mixture of Gaussians
(MoG) is difficult. According to the noise level, the stripe
can be divided into light and heavy mixed noise. Most of
the previous methods handle the mixed noise by utilizing the
spectral correlation of the multispectral image. In our previous
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work, we proposed two elaborate models for single-image light
mixed noise removal [27], [43]. For the heavy mixed noise,
the useful information in the image would be overwhelmed
by the noise, whereas previous single-image-based methods
fail to handle this case. In this work, we resort to the external
clean dataset for single-image heavy mixed noise removal.

III. THE TWO-STREAM-BASED WAVELET ENHANCED
U-NET MODEL

As illustrated in Fig. 3, our proposed two-stream-based deep
CNN is composed of two complementary components: one
stream for stripe estimation and the other stream for image
reconstruction. The stripe estimation stream is trained to infer
the various distributions of the stripe ‘noise’. Meanwhile, the
internal directional property is extracted via the embedded
wavelet. The image reconstruction stream is trained to recover
the clean image with the lossless-based multiscale wavelet.
Moreover, the two-stream intermediate features are further
merged as an attention map for improving the discrimination.

A. The External Prior: Enhanced U-Net (EU) Model

1) Advantage over Gaussian Model: Most of the previous
methods treat the stripe as ‘noise’ and apply the conventional

Gaussian model or mixture of Gaussians for modeling the
noise [21], [26], [44]. However, from the physical degradation
and its visual appearance, we know the distribution of the
stripe is obviously nonindependent. Moreover, different stripes
possess distinctly different distributions in Fig. 1. It is very
difficult to construct a precise mathematical formulation to
fit the distributions of different stripes. In this work, we by-
pass the difficulty of constructing the handcrafted distribution
function. In contrast, we start from the data-driven perspective
and resort to the universal approximation ability of the CNN
for an arbitrary signal [60]. We find that the CNN has a vast
advantage in structural noise modeling.

To illustrate this, we plot the distributions of two kinds of
stripe noise in Fig. 4, marked by the blue curve. Then, we show
the distribution of estimated noises by both our CNN model
(red curve) and the Gaussian model (black curve). In Fig. 4(a),
the distribution of the additive stripe is very complex. The
learned distribution of the CNN is much closer to the original
one. In Fig. 4(b), the distribution of the mixed noise exhibits
a Gaussian-like shape. Both the CNN model and Gaussian
model are approximated to the ground truth. However, the
CNN model can well fit the high-frequency parts, such as the
range from [20, 60]. For the low-frequency parts, the CNN
model can also capture the small variance. Overall, the CNN
model consistently fits better than the conventional Gaussian
model for different kinds of stripe noise.

2) Enhanced U-Net: In this work, we employ the U-
Net as our baseline, which has been widely used in image
segmentation [61], image deblurring [64], and so on. The
success of the U-Net relies heavily on the long-term skip
connection between different layers for better feature reuse
and information propagation. However, DenseNet [65] has
demonstrated that the dense connections between both the
short- and long-distance layers would be beneficial for the
feature representation. Motivated by this, we additionally
introduce the short-term connection-based residual blocks [62]
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testing SSIM. We start the CNN from the plain network, and gradually increase each term. The black curve denotes the plain CNN without upsampling and
downsampling. The the blue curve represents the U-Net with larger receptive field. The green curve is the EU model with short connection based residual
block. The orange curve means the wavelet embedded WEU model. The red curve stands for the proposed image decomposition based TSWEU.

into U-Net, as shown in the red dash blocks in Fig. 3.
To illustrate the effectiveness of the enhanced U-Net, we

compare the enhanced U-Net (green curve) with the origi-
nal U-Net (blue curve) and plain network (black curve), as
shown in Fig. 5. We plot their training loss and destriping
PSNR/SSIM curves along with the epoch. Comparing the
blue curve with the black curve, we can conclude that the
downsampling and upsampling operators that induced a larger
receptive field is a key factor in the destriping task. This is very
reasonable since the stripes always run throughout the whole
image. In Fig. 5(a), the training loss of the enhanced U-Net is
obviously lower than that of the original U-Net, which strongly
supports the effectiveness of the residual blocks for better
information propagation. In Fig. 5(b) and (c), the PSNR and
SSIM values of the enhanced U-Net are consistently higher
than those of the original U-Net with iterations.

B. The Internal Prior: Wavelet EU (WEU) Model

In this subsection, we first introduce the relationship be-
tween the wavelet and the CNN. Then, the advantage of the
wavelet embedded in the enhanced U-Net is analyzed.

1) Relationship between Wavelet and CNN: The discrete
wavelet transform (DWT) is governed by the choice of fil-
ters/wavelet transform for which the wavelets are discretely
sampled, such as the Haar wavelet. For the image processing
task, its solution can be roughly expressed as follows:

Xpdq “ ΓpψpXpd´1qqq, (1)
where Xpdq is the signal of the decomposition level d, ψ is the
filtering transform operator, such as the Haar wavelet, and Γ is
the soft or hard threshold operator [66]. Similarly, the output
of the d-th layer of a convolutional layer can be expressed as
follows:

Xpdq “ SpWpdq b Xpd´1q ` Ppdqq P RRdˆCdˆBd , (2)
where Xpdq is the output of the d-th layer, Wpdq is the
projection matrix to be learned, Ppdq is the bias vector, b is
the convolutional operator, Rd, Cd, and Bd are the spatial row,
column, and the channel number of the d-th layer, respectively,
and S : R ÞÑ R is the nonlinear activation function that
handles each pixel individually, such as the sigmoid.

From the mathematical formulations of Eqs. (1) and (2), we
can find that they are very similar to each other. Moreover,

their physical meanings are the same: transform the input
d-th level/layer image into the feature domain via ψ or
Wpdq, activate the sparse features via the nonlinear activation
function Γ or S, and then repeat/recurse this procedure in
a hierarchical manner. The main difference between wavelets
and CNNs is the transformation function ψ and Wpdq. The ψ is
a fixed template for the wavelet, while Wpdq is a learnable filter
for the CNN. This intrinsic similarity between them offers a
theoretical basis for embedding the wavelet into the CNN.

2) Wavelet Enhanced U-Net: The learning-based methods
have dominated computer vision since they can automati-
cally extract abundant features from a large external dataset.
However, we argue that the handcrafted features from the
internal prior can also be very useful when the intrinsic
property can be further utilized to enhance the representative
feature. In this work, we propose to embed the wavelet
into the enhanced U-Net. The enhanced U-Net relies on the
external dataset to extract the feature of the line pattern stripe.
Meanwhile, the direction-aware wavelet focuses on extracting
the most important feature: the directionality of the stripe.
The embedded wavelet can be regarded as a feature attention
reinforcement block that functions as a regularizer to extract
the horizontal/vertical line pattern features of the stripe. Thus,
the joint external and internal modeling makes the features
more discriminative.

To differentiate the stripe from the image structure, the
proposed network should capture more contextual information
and possess as large a receptive field as possible. Apart from
the depth and filter sizes of the U-Net, the downsampling and
upsampling layers are the main means to enlarge the receptive
field. However, the downsampling via the stride convolution
would inevitably introduce information loss, which is harmful
to the pixel-to-pixel-level image reconstruction task. Fortu-
nately, since DWT is invertible, it is guaranteed that all the
information can be kept by such a downsampling scheme.

To illustrate the effectiveness of the wavelet, we compare
the wavelet enhanced U-Net with the enhanced U-Net from
three aspects: the feature maps, the training procedure, and
the testing results. Compared with the stride convolution, the
wavelet can well extract the directional feature in the stripe
lines. On the other hand, the wavelet was able to losslessly
decompose and reconstruct the features, especially for the
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Figure 6. The feature maps comparison between the stride convolution and wavelet. The first and second row show the feature maps (maximum response
along the channels) of the stride convolution in U-Net and wavelet, respectively. We show three different scales feature maps before (1, 3, 5 column) and
after (2, 4, 6) the downsampling. Compared with the stride convolution, the wavelet could better preserve the structure and the line pattern of the stripe.

shallow features, as shown in Fig. 6. In addition, after we
replaced the stride convolution with the wavelet, the training
loss dropped rapidly at the early training stage and was
obviously lower all the time, as shown in Fig. 5(a). Moreover,
the PSNR and SSIM values of the wavelet are slightly better
than that of the stride convolution.

C. The Two-Stream WEU (TSWEU) Model

1) Motivation from Decomposition: Most of the previous
destriping methods fall into the denoising ‘trap’, in which they
estimate either the image or the stripe. However, they neglect
the relationship between the image and the stripe as follows:

Y “ X ` B` N, (3)
where Y P RRˆC is the measured image, X is the desired
clear image, B is the stripe component, and N is the random
noise. For the image decomposition problem, the general
reconstruction model can be formulated as follows:

min
X,B

1

2
||X ` B´ Y||2F ` τP pXq ` λP pBq, (4)

where the first term is the reconstruction term, and the second
and third terms P pXq and P pBq are the priors about the
image and stripe components, respectively. The proposed
decomposition model aims to optimize two variables simul-
taneously, which can be solved via an alternative minimizing
strategy. Compared with the previous ‘denoising’ methods, the
decomposition methods additionally utilize the property of the
stripe/image to strengthen the representation and further build
the connection between the image and stripe components,
which significantly facilitates separating the two components.

2) Two-Stream WEU Module: In this work, we are moti-
vated by our previous image decomposition-based destriping
work [41], which has shown that the joint modeling of both
the image and stripe is better than modeling only one of
them. Our starting point is to extend the decomposition-based
optimization method to the two-stream WEU model. The CNN
model is more representative and robust than implementing
handcrafted features. For example, the low rank obviously no
longer holds for the oblique and mixed noise stripe, since
the low rank cannot capture the angle feature automatically.

Figure 7. The simulated and real image dataset used in this work. We select
15 images as the simulated data surrounded by the red rectangle, and 7 images
as the real data surrounded by the green rectangle.

Similarly, the total variational approach only extracts the
horizontal and vertical first order gradient feature of the image,
while the WEU model can extract the multiscale feature in a
hierarchical manner.

More precisely, we replace the handcrafted low-rank and
total variation prior with the dual WEU, as shown in Fig. 3. For
the optimization of Eq. (4), it is usually converted into three
subproblems: one for optimizing the stripe, one for optimizing
the image, and one for reconstruction. Analogous to iterative
minimization, each WEU stream aims to extract the features of
the stripe and image. Moreover, the features in the two WEU
streams are merged together to influence each other. Finally,
the extracted features from the two streams are imported into
the reconstruction module to obtain a clear image. Thus, the
final loss is defined as follows:

J “
α

2
}FIprY; Wsq ´ X}2 `

β

2
}FSprY; Wsq ´ B}2, (5)

where FI and FS are the mapping functions about the
parameter W, and α and β are the balance parameters. To
verify the effect of the two-stream framework, we also plot the
training loss and testing values of the TSWEU model in Fig. 5.
We can conclude that the two-stream approach is beneficial for
the feature propagation and facilitates the destriping results.
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Figure 8. Simulated destriping results for the multiplicative case. (a) Original HSI NS line band 142. (b) Degraded with multiplicative stripes. Destriping
results by (c) TV, (d) WFAF, (e) LRSID, (f) UTV, (g) SLD, (h) DLS-NUC, and (i) TSWEU. (g) Estimated stripes by TSWEU.

(a) Original

(PSNR, SSIM)

(b) Degraded

(27.21, 0.7241)

(e) LRSID

(34.10, 0.9509)

(d) WFAF

(35.36, 0.9600)

(f) UTV

(37.18, 0.9816)

(g) SLD

(39.63, 0.9862)

(h) DLS-NUC

(33.77, 0.9528)

(i) TSWEU_Image

(42.67, 0.9950)

(j) TSWEU_Stripe

(c) TV

(29.40, 0.8323)

Figure 9. Simulated destriping results for the full proportion case. (a) Original HSI Suwannee band 70. (b) Degraded with full proportion stripes. Destriping
results by (c) TV, (d) WFAF, (e) LRSID, (f) UTV, (g) SLD, (h) DLS-NUC, and (i) TSWEU. (g) Estimated stripes by TSWEU.

D. Training Details

We initialize the convolutional filters with the Xavier
method [62]. The learning rate is initially set as 0.0005 and
decreased to a small value of 0.00005. The momentum and
decay are fixed as 0.9 and 0, respectively. The ADAM solver
[67] is introduced to optimize the model. We train the model
with 100 epochs with a batch size of 24. The training data are
normalized to [0, 1]. We set the hyperparameter α “ 0.001
and β “ 1 to balance the reconstruction error between
the image and the stripe. The MatConvNet toolbox [68] is
employed to train the TSWEU. It is worth noting that due to

the nonuniform property of the stripe noise, a training image
with a large receptive field can significantly boost the final
destriping results. We randomly choose 20000 samples from
the Place2 dataset with size 256*256 for training. Here, we use
the natural images as the training set since the remote-sensing
images vary because of different imaging systems.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setting

We have comprehensively compared the proposed TSWEU
with the state-of-the-art destriping methods, including the total
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Figure 10. Simulated destriping results for the random length case. (a) Original MODIS image Aqua band 31. (b) Degraded with random length stripes.
Destriping results by (c) TV, (d) WFAF, (e) LRSID, (f) UTV, (g) SLD, (h) DLS-NUC, and (i) TSWEU. (g) Estimated stripes by TSWEU.

(a) Original

(PSNR, SSIM)

(b) Degraded

(27.42, 0.7282)

(e) LRSID

(38.44, 0.9892)

(d) WFAF

(39.10, 0.9743)

(c) TV

(28.86, 0.7866)

(f) UTV

(40.28, 0.9820)

(g) SLD

(42.64, 0.9875)
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(35.12, 0.9601)
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(45.44, 0.9949)
(j) TSWEU_Stripe

Figure 11. Simulated destriping results for the periodical and broad case. (a) Original MODIS image Aqua band 22. (b) Degraded with periodical and broad
stripes. Destriping results by (c) TV, (d) WFAF, (e) LRSID, (f) UTV, (g) SLD, (h) DLS-NUC, and (i) TSWEU. (g) Estimated stripes by TSWEU.

variational (TV) [69], wavelet Fourier adaptive filter (WFAF)
[13], low-rank single-image decomposition (LRSID) [41],
unidirectional total variational (UTV) [24], statistical linear
destriping (SLD) [23], deep learning-based stripe nonuniform
correction (DLS-NUC) [54], transformed low-rank (TLR)
[43], weighted nuclear norm minimization (WNNM) [70], and
the framelet [71] methods. To provide a fair comparison, we
collect 15 remote-sensing images as the simulated test dataset
and 7 images as the real test dataset, as shown in Fig. 7.

To provide an overall evaluation of the destriping perfor-
mance, several qualitative and quantitative assessments are
used. The qualitative assessments include the visual inspection,

the mean cross-track profile, and the power spectrum. The
peak signal-to-noise ratio (PSNR) and structure similarity
(SSIM [72]) are employed for the quantitative assessment. All
codes are provided by the authors, and the parameters are
fine-tuned to achieve the best performance on average. It is
worth noting that we do not adjust the parameters of competing
methods for each test image but set the same parameter for
all the test images. The training code and testing datasets of
this work can be downloaded at the homepage of the author1.

1http://www.escience.cn/people/changyi/index.html

http://www.escience.cn/people/changyi/index.html
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Figure 12. Simulated destriping results for the deadline case. The first and second row show the 25% and 50% missing of the HSI Washington DC and
paviaU band 20, respectively. From the first to the last column, we show the original, the degrade, the inpainting results of Framelet, WNNM, and TSWEU.
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Figure 13. Simulated destriping results for the oblique case. The first and second row show the 146˝ and 56˝ stripe on the Cuprite band 10 and Terra band
31, respectively. From the first to the last column, we show the original, the degrade, the destriping results of TLR and TSWEU, estimated stripe by TSWEU.

B. Simulated Image Destriping

According to the different properties of the stripe, the stripe
can be classified into several categories. In this section, we test
the representative and difficult stripe categories.

1) Multiplicative Response: Most of the previous methods
focus on the additive stripe, except the SLD [23]. We first
transform the multiplicative stripe image into the additive
domain via the logarithm function, then apply these additive
destriping methods, and finally retransform the destriping
results into the original domain via the exponent function.
It is worth noting that this can only be used when only the
multiplicative stripe exists without any additive stripe or ran-
dom noise. In addition, TSWEU can remove the multiplicative

stripe in any condition. From the visual results in Fig. 8, most
of the compared methods remove the vertical image structure
unexpectedly. In contrast, the proposed method can satisfac-
torily preserve the line pattern of the image structure marked
by the red rectangle. Additionally, the estimated multiplicative
stripe component in Fig. 8(j) is highly signal-dependent.

2) Proportion: The removal of the full proportion stripe
in the push-broom system is usually more difficult since the
stripe covers the whole image space. In Fig. 9(c) and (h), the
TV and DLS-NUC has oversmoothed the details unexpectedly.
There are residual stripes for the WFAF, LRSID and SLD that
are especially obvious in the low intensity region marked by
the red ellipse. The estimated stripe and image components
achieved with TSWEU are visually pleasing and quantitatively
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Figure 14. Simulated destriping results for the mixed noise case. (a) Original MODIS Aqua band 22. (b) Degraded with mixed noise. Restoration results by
(c) TV, (d) WFAF, (e) LRSID, (f) UTV, (g) SLD, (h) DLS-NUC, and (i) TSWEU. (g) Estimated noise by TSWEU.

Table III
QUANTITATIVE ASSESSMENTS OF DIFFERENT METHODS UNDER DIFFERENT NOISE LEVELS.

Category
Stripe
Level

Index
Method

Noisy TV [69] WFAF [13] LRSID [41] UTV [24] SLD [23] DLS [54] TSWEU

Full
Length

{-10,10} PSNR 33.04 33.99 39.19 40.19 41.57 44.79 36.38 46.82
SSIM 0.8685 0.9227 0.9839 0.9878 0.9923 0.9964 0.9732 0.9973

{-20,20} PSNR 26.98 29.41 35.44 36.17 36.87 41.87 34.47 43.63
SSIM 0.6879 0.8304 0.9748 0.9855 0.9842 0.9949 0.9638 0.9953

{-30,30} PSNR 23.71 26.93 33.28 33.93 34.25 39.01 32.75 42.92
SSIM 0.5650 0.7563 0.9640 0.9720 0.9731 0.9495 0.9546 0.9954

{-40,40} PSNR 21.36 25.12 31.17 31.66 32.75 38.33 31.29 41.78
SSIM 0.4708 0.6902 0.9507 0.9440 0.9671 0.9914 0.9362 0.9933

{-50,50} PSNR 19.51 24.05 30.23 31.13 31.66 37.13 29.18 41.47
SSIM 0.4000 0.6391 0.9443 0.9386 0.9615 0.9903 0.8986 0.9934

{-100,100} PSNR 13.90 20.48 25.14 23.84 26.16 33.20 20.62 38.13
SSIM 0.2064 0.4779 0.8804 0.7274 0.9033 0.9703 0.5892 0.9900

Random
Length

{-40,40} PSNR 32.59 27.09 34.26 33.27 39.54 34.50 33.02 51.45
SSIM 0.9162 0.7523 0.9414 0.9470 0.9869 0.9519 0.9387 0.9985

better than that of the other methods.
3) Length: While it seems counterintuitive, it is much more

difficult to remove the random stripe than the full-length
stripe. On the one hand, the random stripe is more difficult
to differentiate from the line pattern of the image texture. On
the other hand, the cross-assumption over the whole image is
no longer valid, such as the low-rank assumption for LRSID
and the rank 1 assumption for SLD. In Fig. 10, the existing
methods are less effective for the random-length stripes, which
usually exist in the MODIS band 33. The results of TSWEU
[Fig. 10(i) and (j)] show that our method can well handle
the random-length stripe with a significant advantage over the
previous methods.

We also test the effectiveness of all competing methods
for different stripe noise level, as shown in Table. III. Our

TSWEU consistently outperforms the state-of-the-art methods
by a large margin of at least 5 dB, except for the SLD. It
is worth noting that we simulate the full-length stripe with
exactly rank 1, which perfectly fits the strong assumption of
SLD. That is the main reason why SLD performs well on
the full-length stripe, while it works poorly on the random-
length stripe. Moreover, with the increasing level of the stripe
noise, the advantage of the TSWEU is much larger. Due to
space limitations, we do not show the quantitative results on
the other kinds of stripes.

4) Periodicity: The periodical stripe shows regular patterns
and always exists in the cross-track imaging system and is
indeed easier to remove than the nonperiodical stripe. Here,
we choose the typical MODIS Aqua band 22. The periodicity
is 10. Note that the stripes not only are periodical but also
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UTV TSWEULRSID SLD DLS-NUCDegrade

Figure 15. Real destriping results for various remote sensing images. From the left to the right column, it represents the real degrade image, the destriping
results of LRSID, UTV, SLD, DLS-NUC, TSWEU. From the up to the down row, it shows the hyperspectral image CHRIS band41, LakeMonona band105,
MtStHelens band117, Urban band103, and the MODIS image Terra band27, Terra band30, Terra band33.
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have a broad width. In Fig. 11, we can observe that most of
the compared methods can well remove the periodical stripe
with satisfactory visual results. The estimated stripe achieved
by TSWEU is composed of exactly periodical lines.

5) Deadline/Inpainting (Intensity): The deadlines are usu-
ally caused by the malfunction of certain detectors, which
makes the problem difficult. It is difficult to recover the
useful information for the conventional single-image-based
destriping methods. Here, we consider this problem as an
image inpainting issue and compare the proposed TSWEU
with the WNNM [70] and Framelet [71] methods [25% and
50% missing pixels Fig. 12]. It is worth noting that the location
of the deadlines should be provided in advance. The WNNM
and TSWEU can well reconstruct the missing deadlines with
a pleasing visual appearance. Moreover, the TSWEU obtains
higher quantitative indexes.

6) Oblique Stripe (Angle): Most of the existing destriping
methods are designed for the horizontal or vertical stripe
only. The previous methods need to rotate the oblique stripe
image into the horizontal/vertical ones, which would inevitably
cause an information loss due to the interpolation operator. In
contrast, our method can handle the oblique stripe with an ar-
bitrary angle in the original image domain. Here, we compare
the TSWEU with the TLR [43] under different rotation angles,
as shown in Fig. 13. We have three observations. First, the

Table IV
THE ABLATION STUDY OF EACH TERM.

Model CNN Skip Res Wavelet TS PSNR/SSIM
Plain

‘
Ś Ś Ś Ś

39.39/0.9892
UNet

‘ ‘
Ś Ś Ś

40.67/0.9923
EUNet

‘ ‘ ‘
Ś Ś

41.72/0.9932
WEU

‘ ‘ ‘ ‘
Ś

42.11/0.9930
TSWEU

‘ ‘ ‘ ‘ ‘

42.27/0.9943

proposed method can better remove the oblique stripes than
the TLR from both the visual and quantitative assessments.
Second, the estimated oblique stripes in the last column do
not contain any residual image structure. Last but not least,
TSWEU is very robust to the angle of the stripe line, where
the conventional horizontal/vertical stripe can be regarded as
a special case in our method.

7) Mixed Noise: Random noise usually coexists with the
stripe in the remote-sensing images. Previous methods always
rely on the spectral correlation of the multispectral images,
while few works handle this problem from a single image.
We can observe that the existing destriping methods may
fail unexpectedly in the presence of random noise. There are
obvious residual stripes in the destriping results, such as the
LRSID, UTV, and SLD in Fig. 14(e)-(g). Although the WFAF
and DLS-NUC have removed the stripe well, random noise
still remains in the results [Fig. 14(d) and (h)]. For TSWEU,
we have satisfactorily decoupled the clean image [Fig. 14(i)]
and the mixed noise [Fig. 14(j)].

C. Real Image Destriping

To demonstrate the robustness of our algorithm, we test
the proposed TSWEU on real stripe remote-sensing images,
as shown in Fig. 15. We have chosen four representative
nonperiodical stripe images of the push-broom-based hyper-
spectral imaging system and three periodical stripe images of
the cross track-based moderate resolution imaging system. It
is shown that the TSWEU has completely removed the stripe
and consistently achieved a visually pleasing quality for all
cases, while other competing methods may fail for certain
cases. For example, the SLD has achieved very impressive
destriping results for the simulated stripes. However, for the
real stripes with nonrank 1, the performance of SLD decreases
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rapidly. It is worth noting that all competing methods fail
for the random-length stripe in MODIS Terra band 33. Our
method still works well in this case. Overall, the results of the
proposed method are consistent for all test images and exhibit
good visual quality with fewer artifacts than those obtained by
the compared methods.

D. Discussion

1) Ablation Study: In this subsection, we study the ef-
fectiveness of each term in our work as shown in Table
IV. We report the average PSNR/SSIM of each method on
the simulated datasets of stripe noise between [-20, 20]. We
can observe that the UNet obtains much better performance
than that of the plain net. That is, the skip connection that
promotes the information propagation over a long distance
and the downsample/upsample operator that benefits enlarging
the receptive field work to facilitate improving the destriping
performance significantly. Moreover, the embedded residual
blocks that promote the information propagation over a short
distance help to improve the performance. Further, the wavelet
that replaces the conventional downsample/upsample opera-
tor with a lossless reconstruction slightly contributes to the
final performance. Lastly, the two-stream strategy obviously
improves the SSIM.

2) Influence of Image Size: In this subsection, we analyze
the influence of the image size to the destriping performance
and the running time. Here, we set the image size from
64 ˆ 64 to 2048 ˆ 2048 by making it 2 times larger each
time. From Fig. 16(b), we can conclude that the image size
has a different influence on different methods. For example,
with the increasing image size, the performance of the UTV
gradually decreases. From Fig. 16(c), the running time of most
of the competing methods increases rapidly with the increasing
image size, such as the TV, UTV, VSNR, and LRSID, whereas
the running time of the TSWEU is almost constant. That is,
our method is very robust to the image size, which is a very
important merit for large-sized remote-sensing images.

3) Mean Cross-profile Analysis: In this subsection, we
analyze the mean cross-profile of the destriping result, as
shown in Fig. 17. Since the line stripe causes an abrupt change
in certain lines (grey curve), the smoother the mean cross
profile is, the better the destriping result is. To better visualize
this, we just select the row number between [180, 220]. We
can observe that the destriping result of TSWEU (black curve)
is much closer to the original ground truth (red curve).

V. CONCLUSION

In this work, we formulate the single image destriping
task as an image decomposition problem, where the stripe
component and image component are treated equally via a
two-stream CNN. The CNN is beneficial for representing the
stripe noise with more discriminative features via the external
dataset. Moreover, we embed the wavelet into the CNN to
better learn the internal directional property of the stripe.
We also provide a comprehensive category of the remote-
sensing stripes from their visual appearance. While previous
methods may be suitable for some of them, the proposed

method can well handle all of them due to the powerful
representation ability of the model. The proposed method has
been extensively verified on various simulated and real striped
images and outperforms the state-of-the-art methods by a large
margin in terms of quantitative and qualitative assessments,
robustness to stripe categories, running time, and so on.
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