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Abstract—Most of existing medical image denoising methods
focus on estimating either the image or the residual noise.
Moreover, they are usually designed for one specific noise with
a strong assumption of the noise distribution. However, not only
the random independent Gaussian or speckle noise but also the
structurally correlated ring or stripe noise, are ubiquitous in
various medical imaging instruments. Explicitly modeling the
distributions of these complex noises in the medical image is
extremely hard. They cannot be accurately held by the Gaussian
or mixture of Gaussian model. To overcome the two drawbacks,
in this work, we propose to treat the image and noise components
equally and convert the image denoising task into an image
decomposition problem naturally. More precisely, we present a
two-stage deep convolutional neural network (CNN) to model
both the noise and the medical image simultaneously. On the
one hand, we utilize both the image and noise to separate
them better. On the other hand, the noise sub-network serves
as a noise estimator which guides the image sub-network with
sufficient information about the noise, thus we could easily handle
different noise distributions and noise levels. To better cope
with the gradient vanishing problem in this very deep network,
we introduce both the short-term and long-term connections in
the network which could promote the information propagation
between different layers efficiently. Extensive experiments have
been performed on several kinds of medical noise images, such
as the computed tomography and ultrasound images, and the
proposed method has consistently outperformed state-of-the-art
denoising methods.

Index Terms—Image denoising, image decomposition, convo-
lutional neural network, medical image.

I. INTRODUCTION

THE medical noises would obviously increase the uncer-
tainties in the measurement procedures, and degrade the

quality of the images seriously, which make them diagnos-
tically unusable. Numerous image denoising methods have
been proposed in the past decades. In this work, from a more
general perspective, we define the noise (More precisely, we
could name the noise here as the artifacts) as anything that
is not expected to be presented in the medical images. The
noises have different appearances in different imaging instru-
ments and can be broadly classified into two categories: the
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independent random noise and the structurally correlated/fixed
pattern noise. In this work, for the random noise, we mainly
focus on the additive Gaussian random noise in computed
tomography (CT) image and the multiplicative speckle noise
in the ultrasound image. For the structural noise, we mainly
focus on the line pattern stripe noise in the scanning electron
microscope (SEM) image and the circle pattern ring noise in
CT image, as shown in Fig. 1. Even worse, the mixture of
noise makes the problem more intractable. The goal of this
work is to suppress all these artifacts or the mixture of them
via a unified image processing method.

To date, a variety of filter based medical noise removal
methods [1]–[4] have been proposed such as directional filter
[5], wavelet [6], [7]. Over the past decade, the sparse repre-
sentation based optimization methods have received significant
attention, which assumes that the images naturally have the
sparsity property in a particular transformed domain, such as
the total variational [8], [9], the dictionary learning [10]–[13]
to name a few. When the non-local self-similarity meets the
sparse representation, such as the group sparsity [14], [15] and
low-rank representation method [16]–[18], the combination
further boosts the medical denoising performance.

However, there are three main limitations of the optimiza-
tion based methods. First of all, the optimization methods need
explicitly model the statistical distribution of the noise. For
the real-world medical images, where the noises are much
more complex and vary with different appearances such as the
structural noise or mixed noise, it is very hard to figure out
the corresponding mathematical formulations precisely. The
approximations via mixture of Gaussian (MoG) or Laplacian
also fail to model the structural noise. Second, most of the
previous optimization based methods mainly utilize a pre-
defined prior. Such a hand-crafted prior is definitely not
suitable for multi-modality medical images. Last but not least,
the computational load is heavy due to the iteration and
complex operation, which limits their potential for real-time
application.

Recently, CNN has been widely used for low-level image
tasks, such as image denoising [19], deblurring [20], and
super-resolution [21]. The CNN does not need to model the
distribution of the noise explicitly. Instead, for any arbitrary
‘noise’, the network can implicitly approximate them guaran-
teed by the universal approximation theory [22]. Moreover,
the learned prior from the training pairs make the network
more adaptive for specific images. At last, due to the simple
operation of the network, its forward process is extremely fast
which makes it quite suitable for real-time application. These
essential advantages in noise modeling, data prior, and running
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Figure 1. The advantageous of the CNN over the statistical based methods for modeling various kinds of medical noises. Representative medical noises and
their statistical distributions are shown in the first and second row, respectively.

time make CNN a powerful tool for image denoising.
There have been emerged several pioneer deep learning

(DL) works for medical image restoration [23]–[31]. The FBP-
ConvNet [23] combined filtered back projection (FBP) with
a multiresolution CNN for X-ray CT reconstruction. In [24],
Chen et al. proposed a deep encoder-decoder convolutional
neural network (RED-CNN) for low-dose CT imaging. The
denoising autoencoder (DAE) was introduced to remove the
Poisson and Gaussian random noise in the medical images
[26]. Zhang et al. [28] developed a CNN based metal artifacts
removal framework, which fused both the information from the
original and corrected images to suppress artifacts in the X-ray
CT images. Pham et al. [29] introduced the three-dimensional
(3D) CNN for brain MRI image super-resolution with the
help of patches of other HR brain images. Although the DL
methods have achieved encouraging denoising performance,
they still face some problems when dealing with various kinds
of noises. All of them focus on either estimating the image
or the noise, whereas few of them take into account the
characteristic of both the image and noise. We argue that both
of them are important and beneficial to the denoising results.

In this work, we address the noise removal problem from
an image decomposition perspective, in which both the multi-
modality image and noise are represented by different sub-
networks. We model both the noise and image simultaneously
within a cascaded CNN. In the first and second stage, we
estimate the noise and image component respectively. The
estimated noise in the first stage is further fed to the second
sub-network along with the noisy image, which works as a
conditional map to guide the attention of the second sub-
network. These tasks are learned end-to-end by cascading two
similar CNNs, and no hand-crafted modules are required.

As for the training, to avoid gradient vanishing problem, we
introduce both the short-term and long-term connections for

better feature propagation and reuse. Concretely, the short-term
connections generate from the residual blocks [32], and the
long-term connections generate from several skip connections.
We show that the short-term and long-term connections jointly
make the training of the deeper network easier and more
effective with better restoration performance. To alleviate the
issue of limited training samples, we firstly pre-train our
model on the natural images and then fine-tune it on the
corresponding limited medical images. The contributions of
the proposed work are summarized as follows:

• We utilize the characteristics of both the noise and image
component simultaneously from the image decomposition
perspective. Thus, we propose a two-stage CNN model
to restore the desired images by leveraging the predicted
noise map, such that our model is robustness to different
noise categories and noise levels.

• Our method can handle various medical noises with fast
testing speed and better performance over the state-of-the-
art methods. Extensive experimental results on different
medical datasets verify the effectiveness and efficiency of
the proposed method.

The remainder of this paper is organized as follows. In
Section II, we analyze why we use CNN for the medical
image and noise modeling, and present our two-stage very
deep model. Experimental results and discussion are reported
in Section III. Finally, we conclude the paper in Section IV.

II. TWO-STAGE CONVOLUTIONAL NEURAL NETWORK
FOR MEDICAL NOISE REMOVAL

A. Preliminary

1) Image Decomposition: For medical images, the noises
mainly contain the random and structural ones, as shown in
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Figure 2. The advantageous of the CNN over the hand-crafted priors for modeling medical image structure. We visualize the features extracted by CNN and
the hand-crafted methods. The TV and wavelet method consistently utilize the same features, while the CNN could extract the hierarchical features.

Fig. 1. In this paper, we assume that the degradation can be
formulated mathematically as follow:

Y = X + N, (1)
where X is the ground truth image, Y is the input noise
image, N is the noise. The goal of the image decomposition
is to estimate both the clear image X and the noise N
simultaneously from the degraded image Y.

2) CNN: Assuming there are D layers in the designed
network, for a given sample Y ∈ RR×C×B , the output of
the first layer is X(1) = S(W(1) ⊗ Y + P(1)) ∈ RR×C×B1 ,
where W(1) is the projection matrix to be learned from the
first layer, P(1) is the bias vector, ⊗ is the convolutional
operator, B1 is the channel number of the first layer, and
S : R 7→ R is the nonlinear activation function which handles
each pixel individually, such as the sigmoid or rectified linear
unit (RELU). Next, the output of the first layer X(1) is treated
as the input of the second layer. Consequently, the output of
the d-th layer can be expressed as:

X(d) = S(W(d) ⊗ X(d−1) + P(d)) ∈ RR×C×Bd . (2)
It is easy to understand that the forward procedure (namely the
Eq. 2) is to extract the features from the input data in a hierar-
chy manner. To learn the parameters {W(1),W(2), ...,W(D)},
the back propagation is applied to solve the following problem:

JI+NRecon =
1

2

∥∥∥FI([Y, N̂])− X
∥∥∥2 +

1

2
‖FN (Y)− N‖2, (3)

where FI and FN are the composite network mapping
functions for the image and noise, respectively. In the next
subsections, we will analyze why we choose CNN to model
both the image and noise component. Then, we will present
our two-stage network in detail.

B. Why CNN for Noise Modeling: Statistical Analysis

In conventional methods, they always assume the distribu-
tion of the noise to be Gaussian or a mixture of Gaussian.
However, the noise characteristic is complex in the medical
image [33], which is hard to provide the concrete expres-
sion explicitly. Moreover, the structural noise with correlation
makes the problem harder.

To illustrate this problem, we plot the statistical distri-
bution of four representative noises in Fig. 1. we gener-
ate various noise images in the first row. For example,

we generate the Gaussian noise by the Matlab function
sigma gau*randn(size(X)), the speckle noise via imnoise(X,
‘speckle’, var speckle), the stripe noise by the random lines
with different intensity, and the ring noise by the Bresen-
ham circle [34]. The histograms (horizontal axis means the
normalized intensity, vertical axis means the number of the
corresponding intensity values.) of both the ground truth (blue
curve), a mixture of Gaussian model [35] (black curve), and
the proposed method (red curve) is shown in the second row.

We have three main observations here. First, the distri-
butions of different noises vary from the random noise to
the structural noise. It is extremely hard to explicitly fit the
distribution of structural noise. That is the main reason why
the structural noise is harder to be removed. Second, for
the random noises, the distribution estimated by our method
could perfectly match that of the ground truth, while the
MoG method fails to accommodate the multiplicative speckle
noise well. Third, for the structural noises, although the
estimated distributions of our CNN method are not exactly
matching to the original ones, the CNN provides a satisfactory
approximation to the original ones. This powerful fitting ability
of the deep model can be well explained by its universal
approximation for arbitrary signal [22]. These observations
motivate us to model the medical images with the CNN model.

C. Why CNN for Image Modeling: Three Explanations

In this section, we will illustrate why the CNN based model
performs better than previous methods in three aspects: the
intuitive, the mathematical, and the practical result aspect.

1) From Intuitive Perspective: The start point between the
conventional methods (filter and optimization methods) and
CNN method is opposite. The conventional methods treat the
denoising task as an ill-posed problem by obtaining the desired
solution from the degraded input. However, there exist infinite
solutions for the inverse process.

On the contrary, the learning-based CNN methods place
emphasis on the forward process: the preparation of the
clean/degraded pairs for training. The CNN model then is
trained to fit the degradation to clean mapping, which can be
well addressed by the back propagation algorithms, such as the
ADAM [36]. Thus, the preparation for the training pairs is a
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Figure 3. Illustration of the different networks. (a) Plain-Net. (b) Oracle-Net. (c) Proposed network. Compared with plain-Net, the oracle-Net has an additional
ground truth noise map as the conditional input. Compared with oracle-Net, the proposed network learns the noise map via a sub-network in the first stage.
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Figure 4. The architecture of the two-stage deep model. Two CNN sub-networks with similar structure are used for noise prediction and image reconstruction,
respectively. The image sub-network takes the output of noise sub-network as a conditional map. In other words, the estimated noise map via the first noise
sub-network serves as an guidance by indicating the image sub-network about the noise distribution and level for better restoration.

key factor in the success of the medical image noise removal.
The CNN methods transfer the difficulty from solving the ill-
posed problem (backward process) to the training data prepa-
ration (forward process. Normally, we only need to generate
the noisy image from the ground truth), which significantly
reduces the difficulty of the problem.

2) From Mathematical Perspective: For the filtering based
methods, the solution can be roughly expressed as:

X̂ = Γ(φ(Y)), (4)
where φ is the filtering transform operator, such as the well-
known wavelet, Γ is the soft or hard threshold operator [37].
For the optimization based methods, the denoising problem is
usually formulated as follow:

X̂ = arg min
X

1

2
||X − Y||2 + λΦ(DX). (5)

Generally, the half quadratic splitting strategy [38] is adopted
to optimize the problem (5). Thus, the original problem can

be transformed into two easier sub-problems: X̂ = arg min
X

1
2 ||X − Y||2 + α

2 ||A− DX − J
α ||

2

Â = arg min
A

α
2 ||A− DX − J

α ||
2 + λΦ(A),

(6)

in which the auxiliary variable A can be solved by the

A(k+1) = shrink λ
α

(DX(k) +
J(k)

α
), (7)

where D is the sparse transformation operator, J can be
regarded as the compensating variation, α is the regularization
parameter, shrink λ

α
is the soft shrinkage operator, and k is the

iteration number.
We can observe that Eq. (2), (4), (7) are very similar to

each other. Their solutions all share the same format: a linear
transformation and then non-linear activation function. This
intrinsic similarity can partially explain why the deep model
is also suitable for image restoration task.

Compared with the filter based methods, the CNN and
optimization methods obtain the solution in a recursion man-
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Table I
DETAIL ARCHITECTURE DESCRIPTION OF THE NOISE SUB-NETWORK. CR MEANS THE CONVOLUTIONAL + RELU. CB IS SHORT FOR CONVOLUTIONAL +

BN. CBR DENOTES THE CONVOLUTIONAL + BN + RELU. THE NUMBER IS THE LAYER OF THE SUB-NETWORK.

Layer Input CR1 CBR2 CBR3 CB4 CBR5 CBR6 CB7 CBR8 CBR9 CB10 CBR11
Kernel Size — 3*3 3*3 3*3 3*3 3*3 3*3 3*3 3*3 3*3 3*3 3*3

Filter Number — 64 64 64 64 64 64 64 64 64 64 64
Receptive Field — 3 5 7 9 11 13 15 17 19 21 23

Image Size 40*40*1 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64

Layer CB12 CBR13 CBR14 CBR15 CB16 CBR17 CBR18 CBR19 CB20 CBR21 CBR22 C23
Kernel Size 3*3 3*3 3*3 3*3 3*3 3*3 3*3 3*3 3*3 3*3 3*3 3*3

Filter Number 64 64 64 64 64 64 64 64 64 64 64 1
Receptive Field 25 27 29 31 33 35 37 39 41 43 45 47

Image Size 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*64 40*40*1

Table II
QUANTITATIVE COMPARISON BETWEEN PLAIN-NET, ORACLE-NET AND

PROPOSED NETWORK.

Noise Plain Oracle Proposed
PSNR 23.05 37.18 46.89 37.46
SSIM 0.2329 0.8921 0.9908 0.9001

ner. They gradually approximate to the desired solution with
compensation (P(d) and J(k) can be understood as the com-
pensation variables) in each iteration, which makes them more
reasonable. The number of recursions depends on the depth
of the deep model and the iterations of the optimization.

The conventional filter or optimization based methods use
the hand-craft features, namely the φ and D are pre-defined.
On the contrary, the transformation in CNN models are adap-
tively learned to implicitly fit the distribution of the training
data, which makes them more professional for specific tasks.

3) From Practical Perspective: We visualize the extracted
features by the filter method, optimization method, and the
CNN. We chose the representative method: wavelet filter [7],
total variational [9], and our CNN model for comparison.
As shown in Fig. 2, the conventional methods could only
extract the fixed pattern structures. The features in the CNN
exhibit diversity from the singularity point, to various lines
with different direction and thickness, to the rough profile.

D. The Architecture of Two-Stage CNN (TSCNN)

1) Advantageous of the Cascaded Sub-networks: As we
have analyzed before, CNN is a more powerful tool for both
the image and noise modeling. Directly end-to-end mapping
the noisy image to the clean one may neglect the correlation
between the image and noise. We name this network as the
plain-Net [Fig. 3(a)]. Given the image decomposition frame-
work, the image and noise mutually influence each other. The
noises have specific distributions, which is worth taking into
consideration along with the image content, and thus facilitate
to decouple the image and noise components more thoroughly.
A natural idea is to give the oracle/ground truth information
about the noise to the image reconstruction network. And we
name this network the oracle-Net [Fig. 3(b)]. However, the
oracle/ground truth information about the noise is unknown in
reality. In this work, we go further by learning two joint sub-
networks for both image and noise component simultaneously,
as shown in Fig. 3(c).

To verify the advantageous of the proposed network, we
compare the three networks on the CT dataset with sigma = 20,
as shown in Table II. We can observe that the amazing results
by the oracle-Net are significantly higher than the others. The
oracle-Net means that the inputs are the noise map and also the
noisy image (the two components are concat together as the in-
put, namely 40*40*2), and the output is the clean image. That
is to say, the function of the network is to fit a subtractor (noisy
image Y - noise map N = clean image X). This phenomenon
illustrates the upper bound performance represented by the
oracle noise map. Without the noise map as guidance, namely
the plain network, the quantitative performance is 37.18dB. We
can see that with the estimated noise map as guidance, even
it may be not exactly ground truth, it would also be beneficial
to the denoising results. Here, we have 0.28dB improvement
over the plain network. The proposed net and the oracle-Net
import additional information about the noise for the network,
thus they could better handle the noise. This motivates us to
introduce the noise map estimation sub-network and design
the cascaded CNN architecture.

In the first stage, we apply a CNN to learn an image
to noise mapping, where the input is the noisy image and
output is the estimated noise. The learned noise map which
contains abundant information about the noise, such as the
distribution (category of the noise) and intensity (noise level).
In the second stage, we apply another CNN shared the same
architecture as the first one to learn an image to image
mapping. The estimated noise acts as a conditional map to
indicate the image sub-network for better reconstruction. Thus,
the proposed method is robust to different noise with various
noise levels, which would be discussed in section III-D.

2) The Overall Architecture: In this work, we propose a
two-stage CNN (TSCNN), as shown in Fig. 4. The network
mainly contains three layers: convolutional, batch normaliza-
tion (BN), and rectified linear unit (RELU). The convolutional
layer is used to extract various features. The BN layer is
incorporated for avoiding the gradient vanishing or divergence
issue. And the RELU layer is utilized for pursuing sparsity
and also for its highly nonlinear ability. No pooling layer
or down-sampling operator is applied in our network, since
this would inevitably cause the information lost for pixel level
based image denoising task.

We use 3 × 3 filters throughout the whole net with stride
1. The filter number of each layer is fixed to 64. To avoid
the boundary effect and preserve the spatial size, we pad
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Figure 5. The effectiveness of the short-term and long-term connections. (a)
Training loss. (b) Validation loss.

each layer with the same size as the original image. The
receptive field of the network is much related to the depth
of the network. Our training image size is 40 × 40. To fully
utilize the whole contextual information of the given image,
the depth of each sub-network is 23. Thus, the receptive field
(23 × 2 + 1 = 47) is slightly larger than the image size. To
make it more clear, the architecture of the image/noise based
sub-network is shown in Table I. It is worth noting that Table I
shows the architecture of the noise sub-network, not the whole
network. The noise sub-network and the image sub-network
share a very similar architecture. Thus, we do not introduce
the details of the image sub-network. The only difference
between noise sub-network and the image sub-network is the
first layer. The input of the noise sub-network is the noisy
image 40*40*1, while the input of the image sub-network is
both the noisy image and estimated noise map 40*40*2. And
the details about the TSCNN are discussed in section III-D.
It has been widely accepted that the deeper models involve
more contextual information via a larger receptive field with
better performance. However, when the depth of the model
increases, the notorious gradient vanishing problem appears.
In our network, we introduce both the short-term and long-
term connections jointly to alleviate this issue.

3) Short-Term Connection: The gradient vanishing issue
restricts us to train a very deep model with powerful rep-
resentation. The essence of the gradient vanishing problem is
that the gradient flow tends to be zero. The main reason is
that the activation functions in each layer only respond to a
certain percentage of the feature. The deeper the model is, the
less the feature activates.

The residual block proposed by He et al. [32] is a powerful
tool to accommodate this problem for two consecutive layers.
The main idea of the residual learning, F(x) = H(x) + x,
is to transform the original unreferenced mapping F(x) to
residual mapping H(x). The residual blocks only need to learn
the difference between its input and output. Such a simple
reformulation by learning the sparse residual, not the image
itself significantly facilitates to train a deep model, since the
sparser gradient of the residual is easier to be propagated.

4) Long-Term Connection: Although the residual blocks
facilitate the information to circulate via the short-term con-
nections, the high-frequency details may still lose after very
deep propagation. Moreover, it is worth noting that the image

denoising task is a typical image to image transformation task,
in which most of the information should be preserved and only
the sparse noise component needs to be removed.

This motivates us to introduce the long-term skip connec-
tions to promote the information propagation. Skip connec-
tions [39] between layers have been long studied in neural
networks, to improve the flow of information. In our task, on
the one hand, the long term connection works as a memory
module to preserve the similarity between the input and output,
which is similar to that of the fidelity term in the optimization
model. On the other hand, it also can compensate for the
information loss during the propagation and enhance high-
frequency details.

To validate the effectiveness of the long and short term
connections, in Fig. 5, we show the training and validation
loss curve with only long-term connection (black curve),
with only short-term connection (blue curve), and with both
of them (red curve). Compared the red curve with black
curve and blue curve, we can conclude that both the long-
term connection and short-term connection benefit to the final
training procedure. Moreover, in low-level image-to-image
translation task, the long-term connection is more important
than short-term connection.

5) Fine-tuning Strategy: In our work, we first trained our
model on the Berkeley Segmentation dataset (BSD)1 with
204,800 sub-samples with the size 40 × 40. This dataset
contains abundant image structures such as the fine textures
and large scale edges with different scale and direction, which
has been widely used as a fair benchmark for training [19],
[40], [41]. Then, we fine-tuned the trained model on particular
image datasets with 90 percent for training and the remaining
10 percentage for testing. The reasons are three-fold. On the
one hand, we have not enough medical training samples, such
as the clean and noisy ultrasound image pairs. On the other
hand, natural images contain abundant multiscale information.
That is to say, the trained model on the natural image could
be easily transferred to arbitrary images. Last but not least,
the noise sub-network mainly learns the representation of the
noises, which is applicable to both the natural and medical
images.

E. Training Details

The training of the network is to minimize the Eq. 3 and
learn the parameters {W(1),W(2), ...,W(D)}. We introduce
the ADAM [36] solver to optimize the problem. For the
initialization of the parameters, we follow the Xavier method
proposed by [42]. The learning rate is initialized as 0.0005 and
decay 1/2 every 20 epochs. The momentum is 0.9 and a mini-
batch size is 128. And the training criterion is consistent for
all kinds of noises. We use MatConvnet [43] to implement our
network. In our work, we jointly train the cascaded network
in an end-to-end manner which is similar to the multitask
learning. On the one hand, the two tasks are tightly coupled,
which is beneficial to each other. On the other hand, the
individual training of each sub-network and fine-tuning the
whole cascaded network would be time-consuming.

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Table III
A COMPARISON OF STATE-OF-THE-ART MEDICAL IMAGE DENOISING METHODS AND THEIR PROPERTIES.

Method Task Scalability Vectorization Information Prior Modeling Speed Performance
OWT Denoising No No Local Hand-crafted Image

BM3D Denoising No No Local+Nonlocal Hand-crafted Image
WNNM Denoising No Yes Local+Nonlocal Hand-crafted Image
DnCNN Denoising Yes No Local+Global Learned Noise
OBNLM Despeckling No No Local Hand-crafted Image

NLLR Despeckling No Yes Local+Nonlocal Hand-crafted Image
IDCNN Despeckling Yes No Local+Global Learned Noise
WFFT Destriping No No Local Hand-crafted Image
VSNR Destriping No No Local Hand-crafted Noise

DLS-NUC Destripnig Yes No Local+Global Learned Noise
MMF Deringing No No Local Hand-crafted Image
VSC Deringing No No Local Hand-crafted Image

TSCNN Comprehensive Yes No Local+Global Learned Image+Noise
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Figure 6. Illustration of the training and testing samples. The first row shows
the representative CT images with five different parts of human. The second
row shows the representative ultrasound images with three different parts of
human. The third row shows the representative SEM images with two different
kinds of plants.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setting

1) Datasets: We use three kinds of medical image datasets
for different noises: the random Gaussian noise in CT, the
random speckle noise in the ultrasound image, the line pattern
noise in SEM, and the ring pattern noise in CT. The CT dataset
is downloaded from National Biomedical Imaging Archive
(NBIA)2, typically patients related by a common disease (such
as lung, Lymph, and Prostate cancer) with various image
modalities (such as CT and MRI). DICOM is the primary file
format used by NBIA for image storage. We collected 1000
CT images with the size 256 × 256. The clinical ultrasound
dataset3 comes from the teaching files from the Gelderse
Vallei Hospital in Ede, the Netherlands, which included a
large number of general ultrasound cases collected over the

2https://public.cancerimagingarchive.net/ncia/searchMain.jsf
3http://www.ultrasoundcases.info

Table IV
QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER DIFFERENT

GAUSSIAN NOISE LEVELS IN CT.

Noise Level Index
Methods

Noisy OWT BM3D WNNM DnCNN TSCNN-NFT TSCNN

10
PSNR 28.94 38.22 41.13 41.16 40.59 40.68 41.85
SSIM 0.4924 0.9184 0.9477 0.9502 0.9453 0.9464 0.9556

20
PSNR 23.05 34.79 37.84 37.97 37.01 37.46 39.16
SSIM 0.2329 0.8659 0.9175 0.9212 0.8719 0.9108 0.9338

30
PSNR 19.60 32.83 35.76 36.16 34.88 35.37 37.18
SSIM 0.1363 0.8280 0.8896 0.9004 0.8176 0.8546 0.9181

50
PSNR 15.39 30.47 33.16 33.74 32.57 32.85 34.72
SSIM 0.0655 0.7759 0.8537 0.8729 0.7699 0.7831 0.8887

Table V
QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER DIFFERENT

SPECKLE NOISE LEVELS IN ULTRASOUND.

Noise Level Index
Methods

Noisy OBNLM NLLR IDCNN TSCNN

0.01
PSNR 23.37 28.57 29.55 34.25 34.49
SSIM 0.5747 0.8578 0.7983 0.9272 0.9330

0.02
PSNR 22.56 27.71 28.01 32.71 33.04
SSIM 0.5201 0.8335 0.7477 0.9086 0.9144

0.04
PSNR 19.66 26.41 26.78 31.16 31.57
SSIM 0.4150 0.7396 0.7129 0.8843 0.8938

years by the radiologists and ultrasound technicians of the
hospital. The SEM dataset is downloaded from Dartmouth
College Electron Microscope Facility4, which included various
species such as the blood cells and pollen. We collected 300
images and resized them to size 512× 640.

We show some of the representative medical images we
collected in Fig. 6. The first row shows the representative CT
images with five different parts of a human. The second row
shows the representative ultrasound images with three different
parts of a human. The third row shows the representative SEM
images with two different kinds of plants. For example, we
collect the CT images with different human parts, such as
Head, Colonography, Lymph Node, Prostate, Lung. We can
see that these CT images exhibit different structural shape with
different background.

2) Compared Methods: We compare the proposed method
with state-of-the-art denoising methods for different noises.
For the Gaussian noise, the comparison methods include the
filter based OWT [44] and BM3D [15], the low-rank based

4http://www.dartmouth.edu/∼emlab/gallery/

https://public.cancerimagingarchive.net/ncia/searchMain.jsf
http://www.ultrasoundcases.info
http://www.dartmouth.edu/~emlab/gallery/
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(a) Original

(PSNR, SSIM)

(b) Noisy

(28.62, 0.4902)

(c) OWT

(35.94, 0.8684)

(d) BM3D

(37.69, 0.9017)

(e) WNNM

(37.82, 0.9071)

(f) DnCNN

(37.28, 0.8796)

(g) TSCNN_NOfinetune

(37.43, 0.8989)

(h) TSCNN_finetune

(38.22, 0.9125)

Figure 7. Comparison for simulated Gaussian noise. (a) Clean CT image. (b) Gaussian image. Denoising results by (c) OWT, (d) BM3D, (e) WNNM, (f)
DnCNN, (g) TSCNN without finetuning on CT, (h) TSCNN with finetuing on CT.

(a) Original

(PSNR, SSIM)

(b) Noisy

(24.52, 0.7811)

(c) OBNLM

(31.68, 0.9090)

(d) NLLR

(29.04, 0.8322)

(f) TSCNN

(34.45, 0.9477)

(e) IDCNN

(34.20, 0.9449)

Figure 8. Comparison for simulated speckle noise. (a) Clean image. (b) Speckle image. Despeckling results by (c) OBNLM, (d) NLLR, (e) IDCNN, (f)
TSCNN.

WNNM [45], and the deep learning based DnCNN [19].
For the speckle noise, we compare the TSCNN with filter
based OBNLM [46], low-rank based NLLR [47], and deep
learning based IDCNN [48] methods. For the stripe noise, we
compare with the filter based WFFT [49], variational based
VSNR [50], and deep learning based DLS-NUC [51] methods.
For the ring noise, we introduce the filter based MMF [52],
variational based VSC [8] and deep learning based DLS-NUC
[51] methods. The quantitative assessments PSNR and SSIM
[53] are introduced to give an overall evaluation. We have
obtained the source code of the compared methods from the
homepage of the authors, and set the parameters following
the rules in the compared papers with default parameters to
obtain the best results. For the reproduction of our research,
the training code will be available on our homepage5.

Here we give a brief introduction to each of them. We give

5http://www.escience.cn/people/changyi/index.html

Table VI
QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER DIFFERENT

STRIPE NOISE LEVELS IN SEM.

Noise Level Index
Methods

Noisy WFFT VSNR DLS-NUC TSCNN

10
PSNR 33.25 40.40 41.61 38.59 42.90
SSIM 0.8537 0.9841 0.9909 0.9771 0.9942

20
PSNR 27.27 35.32 39.38 36.77 39.61
SSIM 0.6633 0.9645 0.9823 0.9703 0.9895

40
PSNR 21.31 29.80 35.24 33.75 35.75
SSIM 0.4294 0.9191 0.9799 0.9482 0.9568

Table VII
QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER DIFFERENT

RING NOISE LEVELS IN CT.

Noise Level Index
Methods

Noisy MMF VSC DLS-NUC TSCNN

10
PSNR 34.44 38.48 38.58 38.69 45.99
SSIM 0.8235 0.9344 0.9429 0.9496 0.9864

20
PSNR 28.46 33.77 33.89 33.94 43.11
SSIM 0.5965 0.8226 0.8388 0.8675 0.9791

 http://www.escience.cn/people/changyi/index.html
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Figure 9. Comparison for simulated stripe noise level {−40, 40}. (a) Clean SEM image. (b) Stripe image. Destriping results by (c) WFFT, (d) VSNR, (e)
DLS-NUC, (f) TSCNN. The horizontal axis denotes the line number, and the vertical axis means the corresponding mean value.

(a) Original

(PSNR, SSIM)

(b) Noisy

(29.53, 0.6277)

(c) MMF

(33.03, 0.7937)

(d) VSC

(36.64, 0.8754)

(f) TSCNN

(40.92, 0.9521)

(e) DLS-NUC

(34.52, 0.8684)

Figure 10. Comparison for simulated ring noise level {−20, 20}. (a) Clean CT image. (b) Ring image. Deringing results by (c) MMF, (d) VSC, (e) DLS-NUC,
(f) TSCNN.

a comprehensive properties comparison in Table III. The task
means what kinds of noise do they process in the work. The
scalability denotes whether they can be extended to all other
noise removal tasks. The vectorization is whether the input 2-D
image/patch has been transformed into 1D vectors or not (Pre-
serving the structure information intact is very important in
image restoration). The information represents that what kinds
of information have been utilized (The local based methods
mainly utilize the information in a local patch/neighborhood.
The nonlocal based methods take the nonlocal self-similarity
into consideration. The global based methods take advantage
of the whole contextual information). The prior means whether
they model the different dataset adaptively or fixedly. The
learned prior makes the method quite flexible for different
images, while the hand-crafted prior may lose its professional
ability for the specific image. We can observe that most of
the existing methods are still based on hand-crafted prior.
We hope that the learning based method could receive more
attention. The modeling can be mainly classified into two
categories: the images or the noises. That is to say, some
methods mainly estimate the clear image, while some other

methods estimate the noise component instead. It is worth
noting that different from all competing methods, our TSCNN
models the image and the noise component simultaneously
from an image decomposition perspective. The speed and the
performance represent the running time and the denoising
results of each method, respectively.

B. Simulated Results

Figure 7 to 10 show the comparison results of our TSCNN
with the state-of-the-art methods for different noise cases. It
can be observed that our TSCNN obtain the best performance
in terms of the detail preserving, noise removal, visual ap-
pearance and also the quantitative indexes (marked by the
red). Four points are worthy to be noticed. First, our method
is quite flexible for various kinds of noises with different
distributions, including both the random and structural noise,
while previous methods only work well for specific noise.
Second, the fine-tuning strategy of our pre-trained model (on
BSD natural image) to specific medical image greatly boosts
the final restoration performance, as shown in Fig. 7(g) and
(h), which also significantly reduce the training samples of the
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(a) (b) (c)

(d) (e) (f)

Figure 11. Comparison for real Gaussian noise. (a) Gaussian image. Denois-
ing results by (b) OWT, (c) BM3D, (d) WNNM, (e) DnCNN, (f) TSCNN.

Table VIII
QUANTITATIVE COMPARISON BETWEEN TSCNN AND DLS-NUC FOR

DIFFERENT IMAGE CATEGORIES UNDER DIFFERENT NOISE LEVELS.

Data
Noise Level 10 20 30 40

Index PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set12
DLS-NUC 34.50 0.9679 32.98 0.9609 31.81 0.9541 30.69 0.9423

TSCNN 41.82 0.9935 38.87 0.9894 36.86 0.9865 35.30 0.9839

NIR
DLS-NUC 39.67 0.9798 37.49 0.9734 35.71 0.9677 33.96 0.9550

TSCNN 43.22 0.9928 40.25 0.9890 37.91 0.9861 37.09 0.9832

medical images. Third, from the region of interests marked by
the red ellipse and square in Fig. 7, 8, 10, we can observe that
the noises have been consistently suppressed, and different
scale structure information is well preserved. Last, in Fig. 9,
in terms of both the 2D image and 1D mean-cross profile [54],
TSCNN achieves a better destriping result than the competing
methods.

We report our quantitative assessments accordingly from
Table IV to VII. The highest PSNR and SSIM values are
highlighted in bold. We have the following observations.
First, the proposed method achieves the highest PSNR and
SSIM values in most cases, which verify the effectiveness
of the CNN for various noises modeling in medical images.
Second, the difficulty of removing these noises for our method
gradually arises from the ring, Gaussian, stripe, to speckle
noise. Third, the TSCNN significantly improves the records in
terms of the speckle and ring noise removal, and outperforms
the state-of-the-art despeckling and deringing methods with a
large marginal.

It is worth noting that, we re-train the DnCNN and IDCNN
on our datasets, while the DLS-NUC does not provide the
source training code but with the trained model on infrared
image. According to our experiments for CT images Gaussian
noise removal, as shown in Table IV and Fig. 7, the improve-
ment of the fine-tuning on the specific image would boost
improvement about PSNR 1 ∼ 2dB and SSIM 1% ∼ 10%

(a) (b) (c)

(e)(d) (f)

Figure 12. Comparison for real speckle noise. (a) Speckle image. Despeckling
results by (b) OBNLM, (c) NLLR, (d) IDCNN, (e) TSCNN. (f) Estimated
speckle by TSCNN.

(a) (b) (c)

(e)(d) (f)

Figure 13. Comparison for real stripe noise. (a) Stripe image. Destriping
results by (b) WFFT, (c) VSNR, (d) DLS-NUC, (e) TSCNN. (f) Estimated
stripe by TSCNN.

for different noise levels. In Table VI and VII, we can
find that the proposed TSCNN outperforms the DLS-NUC
with approximate 3dB and 7dB, respectively. That is to say,
the proposed TSCNN could still work better than the DLS-
NUC even with the fine-tuning. We further give an overall
comparison on near infrared image NIR [55] and natural
image Set12 [19] datasets. For NIR dataset, we randomly
choose 40 NIR with size 1024*680 as our testing dataset. For
natural image, there are 12 common images with size 256*256
or 512*512 as our testing dataset. The comparison results
are listed in Table VIII. We can observe that the proposed
method consistently outperforms the DLS-NUC on different
image categories, which strongly support the superiority of
the TSCNN over the DLS-NUC. It is worth noting that even
our model has never ‘seen’ the infrared image before, namely
no training or fine-tuning on the infrared image, the proposed
TSCNN still works satisfactorily in terms of quantitative and
qualitative indexes. This phenomenon reveals that the proposed
model has captured the intrinsic line pattern feature no matter
where the stripe noise exists.
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(a) (b) (c)

(e)(d) (f)

Figure 14. Comparison for real ring noise. (a) Ring image. Deringing results
by (b) MMF, (c) VSC, (d) DLS-NUC, (e) TSCNN. (f) Estimated ring by
TSCNN.
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Figure 15. The effectiveness of cascaded architecture. We compare the train-
ing loss and quantitative performance with/without the cascaded architecture.

C. Real Medical Image Results

Figure 11 presents a real Abdominal/Pelvic CT image
via a thin beam of X-ray from the St. Elizabeth’s Medical
Center6. Figure 12 shows a real clinical ultrasound image with
multiple liver cysts obtained from [47]. Figure 13 presents
a real SEM imaging on a sintered specimen of CeO2 [56].
Figure 14 shows a real CT image of a rat reconstructed by
FDK algorithm [8]. It can be observed that the results of
the proposed method exhibit good visual quality with fewer
artifacts than the results obtained with the other methods. The
noises are significantly suppressed and the detail information is
perfectly preserved by the proposed method, while the existing
methods either smooth the image details (such as Fig. 12(b)
and Fig. 13(c)) or contain the residual noise (such as Fig.
13(b)). These experiments demonstrate the effectiveness of our
method for real noisy images.

6https://www.semc.org/
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Figure 16. The effectiveness of the fine-tuning. After the fine-tuning, the
training loss drops drastically.

D. Discussion

1) Effectiveness of the Cascaded Architecture: In our cas-
caded CNN, the first noise based sub-network works as a
noise estimator which tells the second image sub-network
about the noise level and category information of the noise.
With sufficient knowledge known in advance via the first
sub-network, the second sub-network could remove different
kinds of noises categories and noise levels. On the contrary,
the previous methods may fail to achieve this goal. Here,
we demonstrate this property of our work from two aspects:
training loss and noise estimation.

In Fig. 15, we show the training loss of the non-cascaded
model (namely only the noise-CNN sub-network, the blue
curve) and the proposed cascaded model (green curve for
the loss of noise-based sub-network and red curve for the
loss of image-based sub-network). We can observe that the
cascaded model could further boost the training procedure with
lower loss than that of the non-cascaded model. Moreover,
we show the quantitative results of both cascade and non-
cascade model, and we take the DnCNN [19] as a baseline. We
test them on BSD68 with Gaussian noise σ = 20. From the
quantitative results, we can also conclude that our cascaded
model could benefit the training thus with better denoising
performance.

2) Effectiveness of the Fine-tuning: The fine-tuning strategy
(training on a larger dataset first and then fine-tune on the
smaller target dataset) has been widely used for various vision
tasks. As far as we know most of the detection methods heavily
rely on the pre-trained backbone network on Imagenet. In
Fig. 16, we show the training and validation loss before and
after fine-tuning. We observe that after 54 epochs both the
training and validation loss on the BSD decreased slowly.
Here, we fine-tune the pre-trained model on CT dataset. The
loss dropped suddenly and gradually converged in a few
numbers of epochs. We also compare their visual results in Fig.
7 (g) and (h). These results strongly prove the effectiveness of
the fine-tuning strategy.

3) Robustness to Different Noise/Image Categories: Ex-
plicitly modeling the distributions of the complex noises in
medical images, such as the mixed noise categories and noise
levels, is extremely hard for previous methods. We show our

https://www.semc.org/
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Figure 17. Effectiveness of the proposed method with single model for
different noise levels, noise types and image types.

method is robust to any mixed noise with more complex
noise distribution. In Fig. 17, we perform an experiment to
train one single model for mixed noise categories (four kinds
of common noise: Gaussian noise + Speckle noise + Stripe
noise + Ring noise) and mixed noise levels (Gaussian noise
level 10/20, Speckle noise level 0.01/0.02, Stripe noise level
10/20, Ring noise level 10/20). We can clearly observe that our
method consistently obtains the visual pleasure results with
satisfactory quantitative index, which strongly validates the
effectiveness and robustness of TSCNN to any mixed noise
and image type. As far as we know, there are few methods
considering such realistic but challenging noises from a single
image. We do believe that our method could be also well
applied to other artifacts in medical images, such as the metal
artifacts in CT.

4) Robustness to Different Noise Levels: The noise model
not only refers to a statistical probability distribution, but also
its noise level. It is worth noting that, for the conventional
filtering/optimization based method, the noise level is usually
known in advance. They control the denoising strength by
manually adjusting the regularization parameter, which is
associated with the noise level. For most of the previous
methods, not only the noise model need to be known, but
also the noise level has to be known in advance. If not, their
performance will decrease dramatically.

On the contrary, our deep cascaded model is not only robust
to the noise distribution but also the noise level. We train
one single model for different noise levels. We show the
comparison results of the general model with the specific noise
level model. We can observe the proposed model trained for
all noise levels still works well. Compared with the separate
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Figure 18. The comparison between the specific and general models for
different noise levels. The black, red and green curve denote the trained model
for single noise level (nonblind), mixed noise levels (blind) and mixed noise
levels with larger training dataset (blind-L), respectively.
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(d) Blind

(36.25, 0.8820)

Figure 19. The visual comparison between the specific and general model. (a)
Original CT image. (b) The image with Gaussian noise Sigma = 20. Denoising
results by (c) the specific model and the general model.

model (red curve), the results of blind noise model (black
curve) degenerate 0.1 ∼ 0.2dB in all noise levels, as shown in
Fig. 18. However, when we enlarge the training datasets with
four times, the results of blind noise model (green curve) could
even increase 0.1 ∼ 0.2dB in all noise levels. This interesting
phenomenon demonstrates two things. On the one hand, the
proposed model is very robust to different noise levels. On
the other hand, the limited dataset has not utilized the full
potential of the proposed neural network. Our results could
be significantly improved with the larger training dataset. We
also give a visual comparison between the blind and nonblind
model, as shown in Fig. 19. Both the visual appearance and
the quantitative results have slight improvement. The first sub-
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Figure 20. The comparison between the L2 and L1 loss. The results are very
close to each other.
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Figure 21. The influence of the depth of the proposed network. Left is the
PSNR vs the epoch, and right is the SSIM vs the epoch.

network can be regarded as a noise estimator with relatively
high accuracy, so that the image estimation sub-network know
the noise level in advance.

5) The Choice of the Loss Functions: Here, we compare
the difference between the L2 and L1 loss, as shown in Fig.
20. We can observe that both the PSNR and SSIM value of
the L2 and L1 are very close to each other. That is to say,
the reconstruction loss functions only influence the denoising
result a little. Thus, we employ the L2 loss in Eq. (3) for both
the image and noise reconstruction.

6) The Influence of the Network Depth: We explore the
influence of the network depth for the final performance. In
Fig. 21, we compare the PSNR and SSIM value of the model
with different depths. Here, we choose the model with 3, 10,
16, and 23 layers of each sub-network as a representation. The
3, 10, 16, and 23 layers model correspond to the proposed
model with 0, 1, 2, and 3 long-term connections, respectively
(Please refer to the Fig. 4.). For example, for the 3 layer
model, it means that we cut off all the intermediated layers
in 23 layers sub-network (only the first and last two layers
are left). It can be clearly observed that the deeper the model
is, the better the denoising results are. Then, we increase the
layer of each sub-network to 29 layers (purplish red curve).
Compared the network of 23 layers with 29 layers, we can
hardly observe the increase of the PSNR and SSIM value in
Fig. 21. The training time of each depth (3, 10, 16, 23, and 29)
is 0.2, 0.8, 1.4, 2.2, and 2.8 days, respectively. The memory
space of each depth model (3, 10, 16, 23, and 29) is 0.3M,
5.5M, 10.6M, 16.9M, and 20.1M. Therefore, we choose 23
layers to obtain a satisfactory balance between performance
and resource consumption.

7) Testing Speed: In Table IX, we show the running test
time of all competing methods. To give a fair comparison,
we uniformly resize different kinds of medical images into
512 × 512. We perform the experiment on MATLAB 2017a,

(a) (b)

Figure 22. Ring removal with arbitrary position. (a) Ring image. (b) TSCNN.

Table IX
RUNNING TIME (SEC) OF THE COMPARING METHODS ON 512*512 IMAGE.

Method OWT BM3D WNNM OBNLM DnCNN(CPU/GPU)
Time 0.23 2.07 48.72 11.94 4.32/0.003

NLLR WFFT VSNR MMF VSC TSCNN(CPU/GPU)
1259.41 0.24 8.93 2.85 16.57 15.56/0.025

an Intel i7 CPU at 3.6 GHz, an NVIDIA 1080Ti GPU, and 32-
GB memory. We can see that the non-local based methods are
the slowest mainly caused by the non-local patch searching,
such as the WNNM and NLLR. Next is the variational based
methods (VSNR and VSC), due to the iterations. The filtering
based methods are comparatively fast in the FFT domain
(OWT and WFFT). Normally, the CNN based methods obtain
the best performance in running times due to their simple
forward and parallel computation in GPU. As for the training
time, the pre-training time of our model is normally within
two days and fine-tuning for half a day.

8) Interesting Extension: In Fig. 22, we show the result of
the TSCNN model trained with ring circle in the middle. We
can observe that the test ring circle with arbitrary unknown
positions can also be well removed by our method. The
previous methods all need to know the center of the circles.
Such an interesting phenomenon demonstrates the CNN has
learned to capture the features of the circle pattern in the
image automatically. This may provide a new insight for
the vesicle structures detection and removal in transmission
electron microscope images [57].

IV. CONCLUSION

In this paper, we propose to remove the noises in medical
images from the image decomposition perspective. Differ-
ent from previous works, the noise component and image
component are treated equally in our work, and a two-stage
convolutional neural network is proposed to model both the
image and noise simultaneously. Instead of explicitly modeling
the complex distribution of various noises and multi-modality
medical images, the deep model could automatically figure
out the distribution of the specific noise and image from a
data-driven viewpoint. The proposed cascaded CNN model
benefits us to handle different noise categories and noise
levels adaptively. To facilitate the training, we introduce both
the short-term and long-term connections in the network for
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better information propagation. Moreover, we apply the fine-
tune strategy to alleviate the lack of medical images issue.
Extensive simulated and real medical image datasets have been
tested. Experimental results demonstrate that the proposed
method is very effective for various noises, and outperforms
the state-of-the-art methods.

Our work shows that CNN is a powerful tool for modeling
the noises and multi-modality images with fast test speed. We
believe other low-level image processing problems such as the
deblurring and super-resolution tasks could also benefit from
the deep model. Moreover, it is interesting to see more ad-
vanced deep models for medical image analysis. For example,
the 3D CNN could well handle multi-slice data with temporal
information.
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