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Abstract

This paper addresses the problem of line pattern noise
removal from a single image, such as rain streak, hyper-
spectral stripe and so on. Most of the previous methods
model the line pattern noise in original image domain,
which fail to explicitly exploit the directional characteristic,
thus resulting in a redundant subspace with poor represen-
tation ability for those line pattern noise. To achieve a com-
pact subspace for the line pattern structure, in this work, we
incorporate a transformation into the image decomposition
model so that maps the input image to a domain where the
line pattern appearance has an extremely distinct low-rank
structure, which naturally allows us to enforce a low-rank
prior to extract the line pattern streak/stripe from the noisy
image. Moreover, the random noise is usually mixed up with
the line pattern noise, which makes the challenging prob-
lem much more difficult. While previous methods resort to
the spectral or temporal correlation of the multi-images, we
give a detailed analysis between the noisy and clean image
in both local gradient and nonlocal domain, and propose
a compositional directional total variational and low-rank
prior for the image layer, thus to simultaneously accommo-
date both types of noise. The proposed method has been
evaluated on two different tasks, including remote sensing
image mixed random-stripe noise removal and rain streak
removal, all of which obtain very impressive performances.

1. Introduction
The random noise removal problem has attracted much

of the attention and progressed rapidly during the past
decades [1, 26, 10, 39, 2, 15, 29, 9, 33, 38, 7]. By contrast,
the field of line pattern structural noise removal problem
has received less attention as of today despite their abun-
dant application in the real world, such as the stripe noise
in remote sensing images [27, 5, 37, 4, 32], the rain streak
in natural images [14, 19, 8, 23, 21], the nonuniformity in
images acquired by focal plane arrays [25], ringing artifact

Figure 1. An example on the challenging issue: line pattern noise
with random noise removal via a single image. The left is the
degraded image, the right shows the proposed result with noise-
free background and clear texture.

in medical images [11, 17], to name a few. Unfortunately,
these different communities have seldom exchanged ideas
with each other. In this work, we summarise them as the
line pattern noise removal problem, and make an attempt to
settle this problem as well as the random noise. Figure 1
shows one example of a georeference MODIS image con-
taminated with mixed stripe and random noise, where our
method is able to recover the clean background and texture
in single image.

Given a single line pattern noisy image, traditional meth-
ods solve this issue via the image denoising strategy by en-
forcing various prior knowledge on the image, ignoring to
model the line pattern noise in a principal manner [18, 20].
Consequently, the resulting image is either over-smooth or
containing residual line pattern noise. Another research
direction utilizes the image decomposition framework by
treating the image component and line pattern structural
noise component equally [19, 23, 21, 6]. Such a simple
improvement gives this problem a meaningful interpreta-
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Figure 2. Overview of the proposed method. In the second row, the
input rain image is transformed to the domain where the rain streak
has strictly vertical appearance. In the transformed domain, the
image layer and rain streak layer has distinct properties(third row)
and can be projected to different subspaces (fourth row). Thus, the
rain and image background are separated from each other, and the
result of proposed method is visual pleasure (first row, right part).

tion. The intuition behind these state-of-the-art methods
is to make the two components lie on two different sub-
spaces. Thus, the key of the problem is transferred to how
to construct two reasonable measurements to differ the im-
age component from the line pattern component.

The pioneer work [19] utilizes the widely used sparse
coding based on morphological component analysis and
learns two dictionaries: “rain” dictionary and “non-rain”
dictionary. Further, the sophisticated Gaussian mixture
models (GMMs) is introduced by Li et al. [21] for both
the rain layer and image layer with impressive performance,
which can be regarded as a fine-grained multi-dictionaries
version of [19]. The authors [23] go further by borrowing
the concept of discriminative sparse coding to additionally
regularize the two learned dictionaries with mutual exclu-
sivity property, thus making estimated rain and image layer
distinguishable. However, an inevitable difficulty in previ-
ous methods is that the ambiguity between rain and image
dictionary. Even learning with a more compact dictionary
[23], the problem still remains due to inherent ambiguity
between line pattern noise and image structures in original
image domain. Moreover, they fail to explicitly exploit the
directional characteristic of line pattern noise, resulting in a
redundant subspace with weak representation ability.

To avoid these limitations, we offer a new perspective to
model the line pattern structural noise in the transformed
domain with the low-rank subspace constraint, not the orig-
inal image domain. The advantage of our method is two-
folds. First, in the transformed domain, the line pattern
noise show significantly vertical appearance, which facili-
tate us to differ it from the image content more easily. Sec-
ond, in the transformed domain, the subspace belong to the
rain layer is usually very compact. For example, we can
see that in Fig. 2, the rotated rain image can be approx-
imately equal to a rank 1 matrix1. Motivated by this ob-
servation, a simple yet effective transformed image decom-
position model is proposed to explicitly accommodate the
structural and directional line pattern with low-rank prior in
compact and representative manner.

In addition, we also take the random noise into consider-
ation, which is usually associated with the line pattern noise
in real situation [4, 27]. Previous works resort to the addi-
tional multispectral of temporal information to solve this
challenging problem [25, 34, 5, 4, 16, 32]. To distinguish
the image background from the line pattern and random
noise, our start point is from the single image. To this end,
we analyse both the influence of random noise and line pat-
tern noise on the clean image. In the transformed domain,
we discover that the line pattern noise change the statistical
distribution of horizontal gradient obviously, while the ver-
tical gradient are less changed. This inspires us to utilize
the directional total variational to capture this discrepancy
in the image gradient domain, so as to separate the line pat-
tern noise from the clean image in the transformed domain.
Also, the non-local self-similarity based low-rank prior is
employed to remove the random noise as well known. We
show that the compositional directional total variational and
low-rank prior is complementary to each other and very ef-
fective for mixed noise removal.

The contributions of this work are as follows: 1) We
explicitly utilize the directional characteristic of the line
pattern, and model it via the rotated image decomposition
framework, which benefits us to reveal the low-rank sub-
space of the line pattern noise in the transformation domain
with a more compact manner; 2) We exploit both the local
and nonlocal sparsity of the image layer to accommodate
the mixed noise case, and a compositional directional to-
tal variational and low-rank prior is proposed to separate
the image layer from the noise; 3) The proposed method
has been applied on rain streak removal and hyperspectral
stripe removal tasks with impressive performance. Our sin-
gle image based method is even superior to the state-of-the-
art multispectral image based methods in some cases.

1Our method is applied in local patch way, not on the whole image, so
that the low-rank assumption of the transformed rain patch can be satisfied.
We perform the SVD on the constructed low-rank matrix. The horizontal
axis represents the index of its singular value, and the vertical axis stands
for the corresponding magnitude of the singular value.
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Figure 3. Illustration of the effectiveness of the proposed transformed low-rank prior for rain streak and low-rank modeling comparison
between our and two representative methods. The first and second rows illustrate the image layer transformed [30] and rain streak non-local
self-similarity based low-rank models [8], respectively. The third row shows our rain streak layer transformed based low-rank model. Our
method preserves the image texture better (lines of image layer in zoom region) and the rain layer contains only the streak component.

2. Related work

Rotated degradation model: It has been shown that an
image patch has more distinct low-rank property in the
transformed domain than that of the original space [36],
which has been widely used in image alignment [28], super-
resolution [12], and non-pointwise noise removal [30]. Our
starting point to capture the low-rank property in trans-
formed domain is in line with them, while we take a step
from the opposite direction by regularizing the line pattern
layer with the low-rank, not on the background image layer.
That is because the low-rankness of line pattern layer is
much stronger than that of background layer (section 3.2).
To our knowledge, this is the first method to use rotated
degradation model for line pattern noise removal.
Line pattern modeling: The existing methods differ in the
regularization they used, in which the dictionary learning
[19, 23], GMM [21], and low-rank [8, 6] have been intro-
duced for line pattern noise modeling. However, the line
pattern noise has distinctly directional property with simple
structure in a local appearance, while previous methods fail
to capture its intrinsic compact subspace. In this work, we
argue that the low-rank property of the transformed domain
is much more superior to that of the others for compact rep-
resentation of the line pattern noise (section 3.2).
Image layer modeling: For most of existing single image
based methods [19, 23, 21], the philosophy is to treat the im-
age layer and line pattern layer equally with the same con-
straint. However, we hold the viewpoint of common but dif-

ferentiated importance between the two layers. The main
reason is that although the line pattern noise has structural
appearance, the image background has much more abun-
dant structural information with various direction and scale.
In this work, by giving a detailed analysis of the local and
non-local discrepancy between original and degraded im-
age layer, we propose a compositional directional total vari-
ational and low-rank prior for better modeling the image
structure (section 3.3).
Mixed noise removal: In real applications, such as the hy-
perspectral image, the random noise and stripe noise always
coexist [27, 34, 29, 25, 5, 4, 16, 32]. For this challeng-
ing problem, existing methods mainly rely on the spectral
or temporal information with strong assumption that image
sequences are aligned. Previous single image de-raining
methods [19, 23, 21] also cannot solve this issue well. They
model the image layer inadequately and are sensitive to the
random noise. In our work, we sidestep the requirement and
settle the problem in single image via modeling the image
layer more elaborately (section 3.3).

3. Our method
3.1. Rotated degradation model

Most of the existing line pattern noise removal methods
model the degradation procedure as a linear additive com-
position [19, 8, 27, 30, 34, 4, 37, 6, 21, 16], assuming that
the degraded image I ∈ RM×N is composited by two layers,
image layer X and line pattern noise layer R, as follows:
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I = X+R. Thus, this ill-posed problem can be transferred to
estimate clean X and R from degraded image I with proper
constraints. However, the significant features may not be
captured in the original image domain [36, 12], especially
for the line pattern noise with distinct direction character-
istic. To explicitly utilize this most important information,
we propose to model the line pattern noise degradation pro-
cedure with a rotation operator:

I ◦ τ = X + R + N, (1)
where τ is an affine transform to align the line pattern noise
vertically (Fig. 2), and N is the random noise. And we
differ from previous transformed models, in which previous
works seldom consider the random noise factor.

3.2. Line pattern modeling

In this section, we explain why low-rank property in
transformed domain for the line pattern noise is more su-
perior to that of previous methods. To illustrate this, in Fig.
3, we provide three representative examples in which the
constructed low-rank matrixes differ from each other. Three
representative ways to form the low-rank matrix are shown
from the first row to the third row: rotate the image patch,
redundancy in rain patch, rotate the rain patch. It is clearly
observed that singular values of the constructed low-rank
matrix exhibit significant sparsity with different degrees.

Compared with the rotated rain layer, the intrinsic sub-
space of the rotated image layer (First row in Fig. 3, ap-
proximately rank 30) is much more redundant. This can be
naturally understood that the image layer has much com-
plex structural information than that of rain layer. Also, the
redundancy relationship (Second row in Fig. 3, approxi-
mately rank 8) can hardly capture the precise directional
properties of the rain streak, thus cannot reflect the under-
lying subspace of the rain streak. In contrast, the low-rank
subspace of our rotated rain layer (Third row in Fig. 3, ap-
proximately rank 1) is most compact and representative.

Consequently, we can observe that the corresponding es-
timated image layer and rain streak layer strongly associate
with their low-rank properties. All these results highlight
the fact the low-rank constraint for the rotated line pattern
noise is the most compact manner to represent its directional
and structural properties, and motivate us to leverage the
low-rank prior for the line pattern noise.

3.3. Image layer modeling

Developing sophisticated image priors has been the fo-
cus of much image processing in the past decades, with
many significant successes. However, previous methods
utilize the conventional total variational [8, 6, 21], GMM
[21] prior as the line pattern noise equally. On one hand,
they overemphasize the importance of the line pattern layer
and employ the same constraints for both the image layer
and the line pattern layer, overlooking the fact that image
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Figure 4. Effectiveness of local based directional total variational
for stripe noise and non-local based low-rank for random noise.
We analyze the gradient and low-rank property between the clean
and both noise degraded image in transformed domain (second
row and third row). Please refer to section 3.3 for detail.

layer has much more abundant structures; On the other
hand, they do not figure out how the line pattern and ran-
dom noise influence the statistical characteristic of the im-
age layer exactly, which may result in poor removal results.

To overcome these limitations, we firstly analyze the gra-
dient statistical distribution before and after stripe noise de-
graded. As shown in Fig. 4, we can observe that in the
rotated image domain, the horizontal gradient map between
Fig. 4(d) and 4(f) changes a lot, while the vertical gradi-
ent map between Fig. 4(e) and 4(g) is similar. Further, we
plot their corresponding gradient histograms in Fig. 4(i) and
4(j). We observe that the gradient distribution of Fig. 4(e)
and Fig. 4(g) is almost the same [shown in Fig. 4(j)], and
the gradient distribution of Fig. 4(e) and 4(g) is absolutely
different [shown in Fig. 4(i)].

Such an observation is not surprising, since the stripe
line has significantly directional feature. That is to say it
increases the gradient variation across the stripe line direc-
tion (the horizontal direction) while has less influence along
the stripe line. This motivate us to introduce the directional
total variational [5], so as to smooth the horizontal gradient
and preserve the vertical gradient.
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As for the random noise, in Fig. 4(k), we can see that
the random noise influences the low-rank property of the
non-local stacked matrix. It is natural for us to introduce
the low-rank prior to our image modeling. Thus, the local
gradient and nonlocal low-rank prior are proposed to jointly
represent the image structure.

Further, we demonstrate that the compositional direc-
tional total variational and low-rank prior is complementary
to each other and very effective for mixed noise problem, in
Fig. 4(l) to 4(n). We can see that directional total variational
is particularly effective to suppress the stripe noise [Fig.
4(l)], while low-rank is particularly effective to the random
noise [Fig. 4(m)]. By combining both constraints into the
rotated image decomposition framework, our method iter-
atively restores the clear image and line noise component
[Fig. 4(n)]. Note that, the contribution of this work is
not about the conventional low-rank or TV priors for im-
age modeling but why we combine them for mixed noise
removal and how it differs from the line pattern modeling.

3.4. Transformed low-rank recovery model

Putting all terms together leads to the transformed low-
rank (TLR) image recovery model:

min
X,R,Ai,τ

||R||∗ + λ1 (||∇xX||1 + ρ||∇y(I ◦ τ − X)||1)

+λ2

∑
i

(
||Ai||∗ + µ||P̂iVec(X)− Ai||2F

)
s.t. I ◦ τ = X + R,

(2)

where λ1, λ2, ρ, µ are the tradeoff parameters, || • ||∗ repre-
sents the nuclear norm for the convex surrogate functional
of low-rank constraint, ∇x and ∇y denote the horizontal
and vertical derivative operator, respectively, Ai ∈ Rp

2×m

in (2) is the clear low-rank matrix, where p is the size of the
small key patch, m is the total number of the similar patches,
and P̂i contains m matrixes (p2 ×MN ) that extracts the
small patch from the larger image patch Vec(X) ∈ RMN×1.

Our model unifies the image transformation, image de-
noising, and line pattern noise removal in a framework. The
basic idea of the model is that in the transformed image do-
main, the image subspace could be effectively regularized
by the compositional directional total variational and low-
rank prior, and meanwhile the low-rank prior identifies the
line pattern noise subspace. On one hand, a less line pattern
noise image has positive impact on the non-local similar
patch searching, thus facilitating the random noise removal;
on the other hand, a less random noise image would un-
doubtedly boost the line pattern extraction.

3.5. Optimization

Due to the nonlinear property of the measurement con-
straint in (2), a common technique to overcome this diffi-
culty is to linearize the constraint around the current esti-
mate and iterate as follows: I ◦ τ + ∇I∆τ = X + R [36],
where ∇I is the Jacobian (derivatives of the image with

respect to the transformation parameters). Thus, our final
linearized problem is a convex program with respective to
four variables ∆τ,X,R,Ai, can be converted into four sim-
pler sub-problems via alternating minimization with distinct
physical meanings.
1) Update for R: Line pattern noise estimation. In this
subproblem, we fix the other variables and optimize R:

R̂ = arg min
R
||R||∗+

α

2
||I◦τ+∇I∆τ−X−R− J

α
||2F , (3)

where J and α is the Lagrangian multiplier and constant
value, respectively, so as to convert the constrained prob-
lem (2) into its unconstrained subproblem (3). Equation (3)
is a typical low-rank matrix approximation problem which
has a closed-form solution and can be easily solved by the
singular values thresholding algorithm [3].
2) Update for Ai: Image denoising. By ignoring terms
independent of Ai, we obtain following subproblem:

Âi = arg min
Ai

||Ai||∗ + µ||P̂iVec(X)− Ai||2F , (4)

which also can be solved by conventional singular values
thresholding algorithm [3]. Instead of the conventional
nuclear norm, we introduce the weighted nuclear norm
from [15] to improve the denoising performance, since this
reweighting strategy can adaptively accommodate to the
varying noise level.
3) Update for X: Image restoration. Similarly, dropping
out the irrelevant variables, we can recover the desired im-
age by solving the following subproblem:

X̂ = arg min
X
λ1 (||∇xX||1 + ρ||∇y(I ◦ τ − X)||1)

+λ2µ
∑
i ||P̂iVec(X)− Ai||2F + α

2 ||I ◦ τ − X − R− J
α ||

2
F .

(5)

Due to the non-differentiability of the L1 norm in (5), we
apply the ADMM [22] by introducing auxiliary variables
so as to split the original complex problem into several easy
sub-problems with closed-form solutions. Thus, the L1-
related subproblem can be solved via the soft shrinkage op-
erator [22], and the L2-related subproblem can be computed
in Fourier domain. The difference operator can be handled
in fast Fourier transform (FFT) efficiently. The details can
be found in the supplementary material.

It is worth noting, in our implementation, we replace the
||∇y(I◦τ−X)||1 with ||∇y(Xt−X)||1 where Xt is the inter-
mediate result formed by the transformed image denoising
result [Equation (4)]. The main reason is that the random
noise free image follow our vertical gradient preserving ob-
servation more precisely. This also gives a physical mean-
ing expression that the random noise and line pattern noise
removal results are mutually reinforcing.
4) Update for ∆τ : Image transformation. The transfor-
mation can be obtained by solving following subproblem:

∆τ̂ = arg min
∆τ
||I ◦ τ +∇I∆τ − X − R− J

α
||2F . (6)

The closed-form solution of (6) involves with computing
the Moore-Penrose pseudoinverse of ∇I. And the initial-
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(a) Original (SSIM, ILNIQE) (b) Noisy (0.57, 38.65) (c) SR (0.73, 49.18) (d) NINR (0.67, 44.90)

(e) DSC(0.60, 40.87) (f) GLRAM(0.72, 28.86) (g) GMM(0.77, 26.03) (h) TLR(0.73, 25.12)

Figure 5. Simulated rain streak removal results of the dataset [19]. The rain streak here is light but dense.

(a) Original (SSIM, ILNIQE) (b) Noisy (0.83, 19.96) (c) SR (0.75, 30.76) (d) NINR (0.77, 28.31)

(e) DSC(0.85, 20.08) (f) GLRAM(0.89, 21.79) (g) GMM( 0.92, 19.26) (h) TLR(0.89, 18.72)

Figure 6. Simulated rain streak removal results of the dataset [21]. The rain streak here is sparse but bright.

ization of τ can be obtained by the TILT [36] in line pattern
noise region with smoothing background. Thus, we have
τk+1=τk + ∆τ . The algorithm procedure can be found in
the supplementary material.

4. Experimental results
4.1. Experimental setting

The line pattern noise is ubiquitous in the real world. In
this work, we choose two representative applications: rain
streak and hyperspectral image stripe noise removal task to
validate the effectiveness of our method. The configuration
of the platform is on MATLAB 2014a, Intel i7 CPU at 3.6
GHz, and 32-GB memory. The Matlab code of proposed
method can be downloaded at the author’s homepage2.

2http://www.escience.cn/people/changyi/index.html

4.2. Rain streak removal

Compared methods The state-of-the-art single image rain
streak removal methods are selected for a full comparison,
including the dictionary learning based SR [19], DSC[23],
GLRAM [8], NINR [30], and the GMM [21]. All the pa-
rameters are fine-tuned by default or following the rules
in their papers to achieve the best performance. Due to
the space limitation, more results including the comparison
with CNN [13] are included in the supplementary material.
Dataset and evaluation We evaluate the competing meth-
ods on three representative single image rain streak datasets
[19, 23, 21], in which different kinds of rain streak appear-
ance are considered. Both the full-reference assessment
SSIM [31] (larger is better) and no-reference assessment IL-
NIQE [35] (smaller is better) are employed to give an over-
all evaluation. We believe the no-reference assessment is
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(a) Rain image (b) SR (c) NINR (f) GMM (g) TLR(e) GLRAM(d) DSC

Figure 7. Real rain streak removal results of the dataset [23].

more appropriate, since it is closely associated with human
subjective scores and features for subsequent application.
Results comparison Figure 5 and 6 show the simulated
rain streak removal results, and Fig. 7 presents the real rain
streak removal result. Note that the rain streak from differ-
ent datasets have different appearance. We have the follow-
ing observations. First, the proposed method achieves the
best results with respect to both the visual appearance and
the blind assessment ILNIQE. Second, The robustness of
our method for different rain streak is superior to the com-
peting methods. Our method obtains a better balance be-
tween rain streak removal and background texture preserv-
ing in all cases, while some other methods oversmooth the
image background heavily [19, 31] or have obvious residual
rain streak in the image background [23, 31, 8]. Third, com-
pared with the most recent and competitive method [21], our
result also shows slightly better rain streak removal (Fig. 5
and 6) and detail preserving (Fig. 7) performance. This
demonstrates explicit utilization of directional property via
both transformed low-rank and directional total variational
plays a key role in line pattern modeling.

4.3. Hyperspetral stripe removal

Compared methods In hyperspectral image, the stripe al-
ways coexists with the random noise. However there is
few single image base hyperspectral mixed noise removal
method. We compare our method with the state-of-the-art
multiple bands based hyperspectral image restoration meth-
ods, including 2-D low-rank methods LRMR [34], LRTV
[16], MoG [27] and tensor-based methods BM4D [24],
TDL [29], ISTReg [32], ASSTV (only vertical stripe) [5].
Dataset and evaluation The original size of Pavia Uni-
versity dataset3 is 610*340*103. Here, we select an
300*300*40 clean subcubic for simulation. Each band
is degraded with the same level random and stripe noise.

3http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes

The conventional PSNR and SSIM assessments are em-
ployed. For the real hyperspectral image, the size of dataset
CHRIS FY4 is 766*748*18. We select an 590*590*18 sub-
cubic without the black boundary for test.
Results comparison Figure 8 and 9 show the simulated and
real stripe removal results, respectively. We have the fol-
lowing observations. First, most of the previous methods
are effective for the random noise, but fail to remove stripes
satisfactorily. On the contrary, our method is capable of
handling the real complex noise scenarios. Second, our sin-
gle image based method is even superior to the state-of-the-
art multiple based hyperspectral image restoration methods,
both in terms of quantitative assessments and qualitative vi-
sual appearance. This strongly demonstrates that the im-
portance of the reasonable modeling for the image layers in
spatial domain, while previous methods pay much attention
to the spectral correlation. Our work may provide a new
perspective for hyperspectral image mixed noise removal.

4.4. Limitation

The rotation operator and directional property are both
double-edged sword for the line pattern modeling. Once
the rotation operator is called, the high-frequency informa-
tion reduction cased by the interpolation will be unavoid-
able. This is an inherent flaw of our method. For the direc-
tional property, it not only facilitates to remove the line pat-
tern noise, but also takes away the image structure with the
same direction as the line pattern noise unexpectedly (As
shown in Fig. 3, the estimated rain streak layer contains the
texture with same direction as rain streak, though the other
texture have been affected a little). This problem is deeply
rooted in all single image decomposition based line pattern
noise removal methods, since it is hard to completely distin-
guish the line pattern noise and the similar image edges in
an unsupervised manner or without any additional informa-

4http://www.brockmann-consult.de/beam/data/
products/
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(a) Original (PSNR, SSIM) (b) Noisy (22.27, 0.48) (c) BM4D (23.56, 0.54) (d) LRMR (24.07, 0.54) (e) LRTV (18.93, 0.70)

(f) TDL (23.98, 0.57) (g) ISTReg (23.83, 0.57) (h) ASSTV (24.07, 0.79) (j) TLR (30.52, 0.89)(i) MoG (30.78, 0.85)

Figure 8. Simulated mixed random and stripe noise removal results of hyperspectral dataset. Note that all the competing methods need
multiple image bands, while our method is single image based.

(a) Noisy (b) BM4D

(g) MoG(f) ISTReg

(d) LRTV

(h) TLR

(c) LRMR

(e) TDL

(a)-(d) Zoom results

(e)-(h) Zoom results

Figure 9. Real mixed random and stripe noise removal results of the hyperspectral dataset.

tion. To remedy this, incorporating the additional spectral
of temporal information to the decomposition-based frame-
work or learning the rain streak specific based CNN may
facilitate to advance this issue.

5. Conclusion
In this work, we propose a novel transformed low-rank

image decomposition framework for line pattern noise re-
moval. We explicitly utilize the directional property of the
line pattern in the transformed domain, where the subspace
is more compact than that of the original image domain.
This contributes to better separation between the line pat-
tern layer and image layer. Moreover, we analyze the de-
tailed discrepancy between the mixed noise degraded im-

age and clean image, in which both the local directional
gradient and nonlocal self-similarity information has been
involved. With present prevalent of spectral or temporal
correlation modeling, we offer an new perspective from the
spatial transformed domain. Compared to the recent sin-
gle image based methods, this compositional prior suggests
that better modeling for the image layer may have more im-
pact on mixed random and line pattern noise issue. The
proposed method has been tested on rain streak and hyper-
spectral stripe removal, and it consistently achieves state-
of-the-art performance.
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1. Solution to Problem (5) in Main Text
The original problem is shown as follow:

X̂ = arg min
X
λ1 (||∇xX||1 + ρ||∇y(I ◦ τ − X)||1) + λ2µ

∑
i
||P̂iVec(X)− Ai||2F +

α

2
||I ◦ τ +∇I∆τ − X − R− J

α
||2F .

(1)
The main difficulty for solving the problem (1) directly lies in the non-differentiability of the L1 norm and the patch operation
Pi. Naturally, we introduce three auxiliary variables , by applying ADMM to (1). Thus we obtain{

X̂, Ẑ, D̂x, D̂y
}

= arg min
X,Z,Dx,Dy

λ2µ
∑

i
||P̂iZ− Ai||2F +

η

2
||Z− Vec(X)− Jz

η
||2F +

α

2
||I ◦ τ +∇I∆τ − X − R− J

α
||2F

+ λ1||Dx||1 +
β

2
||Dx −∇xX − Jx

β
||2F + λ1ρ||Dy||1 +

γ

2
||Dy −∇y(I ◦ τ − X)− Jy

γ
||2F ,

(2)
where Z,Dx,Dy are the auxiliary variables, Jx, Jy, Jz are the corresponding Lagrangian multiplier, and β, γ, η are the positive
scalars. The problem can be solved via alternating minimization:

Xk+1 = arg min
X

α
2 ||I ◦ τ +∇I∆τ − X − R− J

α ||
2
F + β

2 ||D
k
x −∇xX − Jk

x

β ||
2
F + γ

2 ||D
k
y −∇y(I ◦ τ − X)− Jk

y

γ ||
2
F + η

2 ||Z
k − Vec(X)− Jk

z

η ||
2
F ,

(3)

Zk+1 = arg min
Z
λ2µ

∑
i
||P̂iZ− Ai||2F +

η

2
||Z− Vec(Xk+1)− Jk+1

z

η
||2F , (4)

Dk+1
x = arg min

Dx

λ1||Dx||1 +
β

2
||Dx −∇xXk+1 − Jkx

β
||2F , (5)

Dk+1
y = arg min

Dy

λ1ρ||Dy||1 +
γ

2
||Dy −∇y(I ◦ τ − Xk+1)−

Jky
γ
||2F . (6)

Consequently, subproblem (3) has the closed-formed solution and can be computed in the fast Fourier transform domain
due to the differential operator, subproblem (4) can be computed in pixel-to-pixel level division, which can be regarded as
the aggregation operation in these overlapped regions due to the Pi, and the subproblem (5) and (6) is solved via the soft
shrinkage operator efficiently. The Lagrangian multiplier and positive scalars can be updated as follows:

Jk+1
z = Jkz + ηk(Vec(Xk+1)− Zk+1)

Jk+1
x = Jkx + βk(∇xXk+1 − Dk+1

x )

Jk+1
y = Jky + γk(∇y(I ◦ τ − Xk+1)− Dk+1

y ).

(7)

 ηk+1 = κηk

βk+1 = κβk

γk+1 = κγk.
(8)
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When applying ADMM, the problem with less than three alternating terms usually converges. There are four variables to
be estimated, and the convergence of problem (1) via ADMM can not be guaranteed. However, since each subproblem has
the closed-formed solution, with proper parameter setting and initialization, we empirically find the proposed method can
always obtain a satisfactory result. The running time for an image with size 481× 321 is about 7 minutes with unoptimized
Matlab code. The algorithm procedure of problem (1) is summarized in Algorithm 1. And the whole algorithm in the main
text is shown in Algorithm 21. Our algorithm includes both the outside loop and inner loop, which is very common in image
processing.

Algorithm 1 The innerloop for solving problem (1), namely the problem (5) in main text
Require: The transformed image I ◦ τ , line pattern component R, J

1: Initialize:
2: • Set parameters λ1, λ2, ρ, µ, α, β, γ, η, κ;
3: • Set J(1)x = 0, J(1)

y = 0, J(1)z = 0;
4: for k=1:K do
5: Obtain X(k+1) via solving Eq. (3);
6: Compute Z(k+1) via solving Eq. (4);
7: Solve Eq. (5) for D(k+1)

x ;
8: Solve Eq. (6) for D(k+1)

y ;
9: Update J(k+1)

x , J(k+1)
y , J(k+1)

z via Eq. (7);
10: Update η(k+1), β(k+1), γ(k+1) via Eq. (8);
11: Output the clear image X if k = K.
12: end for
Ensure: Solution X to problem (1).

Algorithm 2 The transformed low-rank (TLR) algorithm
Require: Input image I

1: Initialize:
2: • initial affine transformation τ ;
3: • Set parameters as in Algorithm 1;
4: for n=1:N do
5: Line pattern noise estimation: obtain B by solving Eq. (3);
6: Random noise removal: solve Eq. (4) for Ai;
7: Image restoration: compute X via Eq. (5) (Algorithm 1);
8: Image transformation: update ∆τ via Eq. (6);
9: Output the clear image X if n = N.

10: end for
Ensure: Clean Image X.

2. More results
In this document, we present more results, which are not included in the main paper due to page limit.

2.1. Rain Streak Removal Results

Figure 1 to Figure 3 present three visual rain streak removal results on dataset [2] including the CNN based method [1].
Figure 4 to Figure 6 show three visual rain streak removal results on dataset [3]. Figure 7 and 8 show two real rain streak
image removal results on dataset [4]. The proposed TLR method show obvious advantage over the state-of-the-art methods
in terms of both rain streak removal and image structure preserving under various kinds of rain streak. For example, in Fig.
6 with severe rain streak, while previous methods over-smooth the image content unexpectly (see the cloud marked by the
ellipse), our method preserves the details much better. On the other hand, in Fig. 8, we can observe that our method removes
the rain streak completely, while the competing methods fail to handle this situation (see from the zoom regions).

1Note that, the equations in Algorithm 2 refer to the main text.
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2.2. Hyperspectral Stripe Removal Results

In this section, we present the comparison results on hyperspectral image dataset Urban2. The size of this dataset is
307*307*210. We present the visual stripe removal results and also the corresponding mean cross-track profiles (the hori-
zontal axis represents the row/column number across the stripe, and the vertical axis means the corresponding digital number
value of each row/column). Here, we choose three sub-bands: band 1, band 103 and band 152 as representative. In Fig. 9,
Fig. 11 and Fig. 13, it can be observed that the images restored by our method are more visually pleasant with more detailed
information and noise-free performance. The corresponding mean cross-track profiles as shown in Fig. 10, Fig. 12 and
Fig. 14 further validate the effectiveness of our method for stripe removal, since the curves of our method are much more
smoother than that of the others.

2.3. Large scale data low-rank property analysis

In this section, we verify the low-rank property for both the image and rain streak patch on large scale data. First, we
collect 149625 non-local similar image patch with the size 36 ∗ 100, and 124644 rotated rain patches with the size 40 ∗ 40.
In Fig. 15(a) and (b), we perform the SVD on the collected pathes for both the image and rain, respectively. We can observe
that the rain streak with the line pattern appearance has an extremely distinct low rank structure, while the constructed similar
image patches also possess a relative higher low-rank property. Thus, it is reasonable for us to enforce the low-rank constraint
on both the image and line pattern patch layer.

2http://www.tec.army.mil/hypercube

(a) Noisy (b) SR

(e) DSC (g) GMM

(d) GLRAM

(f) CNN (h) TLR

(c) NINR

Figure 1. Rain streak removal results of image Umbrella on dataset [2].
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(a) Rain image (b) SR

(c) NINR (d) GLRAM

(e) DSC (f) CNN

(g) GMM (h) TLR

Figure 2. Rain streak removal results of image Cat and Dog on dataset [2].
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(a) Rain image (b) SR (c) NINR (d) GLRAM

(e) DSC (f) CNN (g) GMM (h) TLR

Figure 3. Rain streak removal results of image Couples on dataset [2].
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(a) Original (b) Rain image (c) SR

(d) NINR (e) GLRAM (f) DSC

(g) CNN (h) GMM (i) TLR

Figure 4. Rain streak removal results of image Arch door on dataset [3].
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(a) Original (b) Rain image (c) SR

(d) NINR (e) GLRAM (f) DSC

(g) CNN (h) GMM (i) TLR

Figure 5. Rain streak removal results of image Ship on dataset [3].

4327



(a) Original (b) Rain image (c) SR

(d) NINR (e) GLRAM (f) DSC

(g) CNN (h) GMM (i) TLR

Figure 6. Rain streak removal results of image Scenery on dataset [3].

(a) Rain image (b) SR (c) NINR

(f) CNN (g) GMM (h) TLR(e) DSC

(d) GLRAM

Figure 7. Rain streak removal results of image Street on dataset [4].
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(a) Noisy (b) SR

(d) GLRAM

(e) DSC (f) CNN

(g) GMM (h) TLR

(c) NINR

Zoom results of (a)-(h)

Figure 8. Rain streak removal results of image Bicycle on dataset [4].
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(a) Noisy band 1 (b) BM4D (c) LRMR (d) LRTV

(e) TDL (f) ISTReg (g) MoG (h) TLR

Figure 9. Hypersepctral image Urban stripe noise removal results of band 1.

(a) Noisy band 1 (b) BM4D (c) LRMR (d) LRTV

(e) TDL (f) ISTReg (g) MoG (h) TLR

0 50 100 150 200 250 300
0

50

100

150

200

250

Line Number

M
ea

n
 V

al
u

e

0 50 100 150 200 250 300
0

50

100

150

200

250

Line Number

M
ea

n
 V

al
u

e

0 50 100 150 200 250 300
0

50

100

150

200

250

Line Number

M
ea

n
 V

al
u

e

0 50 100 150 200 250 300
0

50

100

150

200

250

Line Number

M
ea

n
 V

al
u

e

0 50 100 150 200 250 300
0

50

100

150

200

250

Line Number

M
ea

n
 V

al
u

e

0 50 100 150 200 250 300
0

50

100

150

200

250

Line Number

M
ea

n
 V

al
u

e

0 50 100 150 200 250 300
0

50

100

150

200

250

Line Number

M
ea

n
 V

al
u

e

0 50 100 150 200 250 300
0

50

100

150

200

250

Line Number

M
ea

n
 V

al
u

e

Figure 10. Mean cross-track profiles for images shown in Fig. 9.
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(a) Noisy band 103 (b) BM4D (c) LRMR (d) LRTV

(e) TDL (f) ISTReg (g) MoG (h) TLR

Figure 11. Hypersepctral image Urban stripe noise removal results of band 103.

(a) Noisy band 103 (b) BM4D (c) LRMR (d) LRTV

(e) TDL (f) ISTReg (g) MoG (h) TLR
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Figure 12. Mean cross-track profiles for images shown in Fig. 11.
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(a) Noisy band 152 (b) BM4D (c) LRMR (d) LRTV

(e) TDL (f) ISTReg (g) MoG (h) TLR
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Figure 13. Hypersepctral image Urban stripe noise removal results of band 152.
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(a) Noisy band 152 (b) BM4D (c) LRMR (d) LRTV

(e) TDL (f) ISTReg (g) MoG (h) TLR
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Figure 14. Mean cross-track profiles for images shown in Fig. 13.

Figure 15. Large scale data low-rank property analysis for both the image and rain component. (a) the image layer, (b) the rain streak layer.
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