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ABSTRACT
Hyperspectral images (HSI) unavoidably suffer from degra-
dations such as random noise, due to photon effects, calibra-
tion error, and so on. Most of existing HSI denoising methods
focus on utilizing the spectral correlation or the spatial non-
local self-similarity individually. In this paper, we propose an
unified low-rank recovery framework for HSI denoising, in
which taking both the underlying characteristics of high cor-
relation across spectra and non-local self-similarity over the
space cubic of HSI into consideration simultaneously. Our
work rely on a basic observation that both the multiple spec-
tral bands and similar spatial structures are lying on low-rank
subspaces and can facilitate to remove the noise jointly. Ex-
perimental results on both simulated and real HSI demon-
strate that the proposed method can significantly outperform
the state-of-the-art methods on several datasets in terms of
both visual and quantitative assessment.

Index Terms— Hyperspectral imaging, denoising, low-
rank.

1. INTRODUCTION

Most HSI classification/recognition algorithms assume that
the input HSI is of scene content that is clear and visible.
However, HSI often suffers from random noise in individual
bands, which badly limits the subsequent processing. There-
fore, it is natural for us to remove the noise as an important
preprocessing procedure.

As an classical yet hot research field, a variety of HSI
denoising methods have been proposed for the restoration of
HSIs. The HSI denoising methods have been classified into
different categories. In this work, we classify the HSI de-
noising methods into two categories according to the utiliza-
tion information: spectral methods [1, 2, 3, 4, 5, 6] and spa-
tial non-local self-similarity methods [7, 8, 9, 10]. The first
kind of methods mainly rely on the high spectral correlation
in HSI. In [1], by lexicographically ordering the 3D cube into
a 2D matrix, the authors proposed a low-rank matrix restora-
tion method for mixed noise removal in HSI. Further, Lu et
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Fig. 1. Flowchart of the proposed HSI denoising algorithm.
We construct the low-rank matrix across spectral dimension
and spatial non-local similarity dimension, respectively.

al. [6] incorporated extra sparse constraint on the spectral in-
formation. Although these low-rank matrix recovery methods
have achieved impressive result in HSI denoising, they have
not fully exploit the abundantly spatial information in HSI.

Another research line follows the non-local self-similarity
perspective which has been used widely in single image de-
noising. The well-known BM3D method was also naturally
extended into BM4D [10] for volumetric data restoration. In
[7], the authors proposed a tensor dictionary learning model
via grouping similar patches for MSI denoising with hard
constraints on the rank of the core tensor. However, they have
neglected the exclusively spectral correlation property in HSI.

In this work, a unified low-rank approach is proposed to
simultaneously involve the spatial and spectral structure in-
formation to obtain a complete representation of HSI (Fig-



ure 1), thus enhancing the final performance in terms of both
noise reduction and structure preservation. More specifically,
to take into account the non-local self-similarity in space, we
group a set of similar cubics for each exemplar cubic as a
2D matrix, where each column represents the joint spectral-
spatial information of one cubic, and enforce the spatial low-
rank regularization on this set. Similarly, to utilize the spectral
correlation, we form another 2D matrix where each column
represents the joint local and non-local spatial information of
one cubic, and use the spectral low-rank constraint on the con-
structed 2D matrix. These two low-rank regularizations are
involved into a unified variational optimization model, which
can be efficiently solved via an iterative numerical algorithm.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed spectral-spatial low-rank ap-
proximation HSI denoising method. Experimental results are
reported in Section 3. We conclude the paper in Section 4.

2. PROPOSED ALGORITHM

Based on the additive Gaussian noise assumption, the HSI im-
age degradation model can be mathematically formulated as:
y = x+n, where y ∈ RMNB×1 is the the observed noisy HSI, x
and n represents the desired clean HSI and noise, M, N, and B
denotes the number of the rows, columns and bands, respec-
tively. The goal of this work is to estimate the clean image x
in presence of the degraded image y under noise variance σ2

by solving the following constrained optimization problem:

x̂ = arg min
x
P (x) subject to ||x− y||22 ≤ σ2, (1)

where P (•) is a regularization function on x. In this work,
we enforce two constraints on clean image. For one hand,
the multiple spectral band can be well represented by the
low-dimensional subspace, which relys on the fact that dif-
ferent spectral band exist information redundancy. For the
other hand, the ubiquitous structural pattern recurrence phe-
nomenon in natural image also exists in HSI, which motivates
us to enforce the low-rank constraint to capture the underly-
ing subspace structure of the similar cubics. By explicitly
incorporating these low-rank priors into (1) with appropriate
regularization parameters, the final problem can be formu-
lated as the following unconstrained optimization problem:{

x̂, P̂i, Q̂i

}
= arg min

x,Pi,Qi

||x− y||22

+ τ
∑

i

(
||R̃ix− Pi||2F + α||Pi||∗

)
+ µ

∑
i

(
||R̄ix− Qi||2F + β||Qi||∗

)
,

(2)

where the HSI x is divided into overlapping cubic of size
P× P× B, P is the length of spatial patch, R̃ix ∈ RPPB×K

indicates the formed matrix by the set of K − 1 similar cu-
bics for the vectorization of exemplar cubic xi ∈ RPPB×1.
Similar to the spatial description, R̄ix ∈ RPPK×B means the

formed matrix by the set of B bands for the vectorization of
K spatial similar patches xi ∈ RPPK×1. Pi and Qi is the de-
sired clean low-rank matrix in spatial non-local and spectral
subspace, respectively. || • ||∗ denotes the nuclear norm [11],
τ, µ, α, and β are the corresponding regularization parame-
ters. Our final model (2) is simple and easy to understand.
The first term is the constraint of linear measurement. The
second and the third terms are the low-rank prior enforced to
preserve the structure relation in HSI. The proposed method
can exploit simultaneously the spatial and spectral informa-
tion, which facilitate the final denoising result.

2.1. Optimization

The proposed objective functional (2) can be efficiently
solved by alternatively minimizing strategy with respect to
the whole image x and low-rank matrix Pi and Qi at per each
location, so as to split the original problem into three simpler
subproblems as follows:
Pi and Qi-subproblem: By ignoring terms independent of Pi

and Qiin (2) respectively, we obtain following subproblems:

P̂i = arg min
Pi

||R̃ix− Pi||2F + α||Pi||∗
Q̂i = arg min

Qi

||R̄ix− Qi||2F + β||Qi||∗.
(3)

Equation (3) is the typical low-rank matrix approximation
problem which has a closed-form solution and can be eas-
ily solved by the singular values thresholding algorithm [12].
In our implementation, we borrow the idea of the reweighting
strategy to improve the performance.
x-subproblem: After solving for each Pi and Qi, the latent
HSI can be reconstructed by solving optimization problem:

x̂ = arg min
x
||x− y||22 + τ

∑
i ||R̃ix− Pi||2F + µ

∑
i ||R̄ix− Qi||2F .

(4)
Equation (4) is a quadratic optimization problem admitting a
closed-form solution. The physical meaning of the solution
is to calculate the overlapped pixels via aggregation, which
can be computed in matrix element-wise division format ef-
ficiently. The algorithm procedure of the proposed method is
summarized in Algorithm 1.

Algorithm 1 Spectral-Spatial Low-Rank Approximation
(SSLRA)
Require: Degraded image y

1: Initialize:
2: • Set parameters τ, µ, α, and β;
3: • Initialize x(1) = y;
4: for n=1:N do
5: Compute Pi and Qi by solving Eq. (3);
6: Solve Eq. (4) for xk+1;
7: end for

Ensure: Clean Image x.



Table 1. Mean quantitative results of differnent methods under several noise levels on Washington DC.
Sigma Index Methods

Noisy BM3D SDS SSTV LRMR NMF BM4D TDL SSLRA

10

PSNR 28.13 31.88 37.86 35.75 37.21 38.70 37.41 38.31 39.38
SSIM 0.8348 0.9257 0.9787 0.9622 0.9748 0.9824 0.9780 0.9812 0.9852

ERGAS 132.61 86.19 44.29 61.93 48.58 40.61 46.18 42.08 36.97
SAM 0.2159 0.1068 0.0519 0.0869 0.0692 0.0507 0.0624 0.0542 0.0479

30

PSNR 18.59 26.24 31.18 30.70 29.64 31.99 30.92 31.40 33.21
SSIM 0.4428 0.7568 0.9079 0.9010 0.8862 0.9241 0.9079 0.9192 0.9448

ERGAS 397.85 165.22 95.98 100.44 116.23 86.20 97.65 92.92 75.37
SAM 0.5497 0.1624 0.1189 0.1196 0.1489 0.0845 0.1081 0.0986 0.0725

50

PSNR 14.15 23.94 25.61 25.33 25.93 28.29 28.09 28.31 30.24
SSIM 0.2465 0.6233 0.7507 0.7525 0.7851 0.8459 0.8310 0.8477 0.8957

ERGAS 663.59 215.39 183.84 185.04 176.55 131.42 134.77 131.95 105.77
SAM 0.7687 0.1918 0.2368 0.2395 0.2181 0.1185 0.1387 0.1213 0.0915

(a) Original Image (b) Noisy Image (c) BM3D (d) SDS

(j) SSLRA(h) BM4D (i) TDL(g) NMF

(e) LRMR

(f) SSTV

Fig. 2. Simulated random noise removal results at band 46 of Washington DC under noise level σ = 30.

3. EXPERIMENTAL RESULTS

We compared our SSLRA with state-of-the-art HSI denoising
methods: BM3D [13], SDS [2], SSTV [5], LRMR [1], NMF
[14], BM4D [10], TDL [7]. All the parameters are fine-tuned
by default or following the rules in their papers to achieve the
best performance.1 The Matlab code of proposed method can
be downloaded at the authors homepage.2 The HSI Wash-
ington DC and AVIRIS are used as simulated and real data,
respectively. The intensity of the data is normalized to [0,
255] beforehand. Four quantitative quality indices are em-
ployed, including peak signal-to-noise ratio (PSNR), struc-
ture similarity (SSIM), erreur relative globale adimension-
nelle de synthese (ERGAS) and spectral angle map (SAM) to
give an overall evaluation. The larger PSNR and SSIM values
are, the better the restored images are. The smaller ERGAS

1We downloaded all the codes from the authors’ homepage.
2http://www.escience.cn/people/changyi/index.html

and SAM values are, the better the restored images are.
Firstly, we test the proposed SSLRA method on Wash-

ington DC 3 for simulation results comparison (we choose
an 256*256*31 sub-cubic [band30 - band60] as the input).
Different degrees of zero-mean Gaussian noise (noise devi-
ation 10, 30, 50) are added to each spectral band randomly.
In Fig. 2, we can clearly see that the proposed method pro-
duces much cleaner result without any residual noise, mean-
while obtaining sharp texture and edge structure, compared
with other competing methods. We also present the overall
mean quantitative assessments of all competing methods un-
der different noise level, as shown in Table 1. The best PSNR,
SSIM, ERGAS and SAM values are highlighted in bold. The
proposed SSLRA achieves the best performance in all cases.
Moreover, with the increasing of noise level, the advantage of
SSLRA over other methods becomes bigger.

3https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html



(a) Noisy Image (b) BM3D (c) SDS

(h) SSLRA(f) BM4D (g) TDL(e) NMF

(d) LRMR (a)-(d) Zoom Results

(e)-(h) Zoom Results

Fig. 3. Results comparison on AVIRIS under heavy noise level.

Then, we performed another real AVIRIS4 denoising ex-
periment to demonstrate the efficiency of our algorithm (we
choose an 400*400*40 sub-cubic [band1 - band40] as the in-
put), as shown in Fig. 3. It is shown that the proposed method
clearly outperforms the compared methods with better visual
appearance and less visual artifacts. From the demarcated
window, the proposed SSLRA even restores abundant edge
structure information from the overwhelming noise situation.

4. CONCLUSION

In this work, we propose to jointly utilize the spectral correla-
tion and spatial non-local self-similarity property for HSI de-
noising. By introducing spectral low-rank constraint, the in-
trinsic low-dimensional spectral structure of HSI can be well
depicted. Meanwhile, low-rank constraint on the spatial non-
local cubics can reveal faithful subspace of the similar pat-
terns. Within the unified spatial-spectral low-rank approxi-
mation model, our approach can remove the random noise
more thoroughly with better structure preserving ability.
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