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Spectroscopic data often suffer from common problems of bands overlapping and random noise. In

this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior

(MAP) problem and be solved by minimizing an object functional that includes a likelihood term and

two prior terms. In the MAP framework, the likelihood probability density function (PDF) is

constructed based on a spectral observation model, a robust Huber–Markov model is used as spectra

prior PDF, and the kernel prior is described based on a parametric Gaussian function. Moreover, we

describe an efficient optimization scheme that alternates between latent spectrum recovery and blur

kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate

the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution

methods suggest that the proposed method can recover spectral structural details as well as suppress

noise effectively.
1 Introduction

Spectroscopic deconvolution and slit width estimation are both

classical problems, which are known to be difficult and have

attracted major research efforts. The analysis of the precise

bandwidth of spectroscopic data is crucial to help understand

various inter/intra-molecular processes. However, the spectra

recorded by a dispersion spectrophotometer are usually distorted

by the response function of the instrument. These distortions

generally include the overlapping of adjacent peaks and the

aberrancy of the relative intensities among the peaks.

The analysis of overlapped bands in IR spectrum is often

assisted by band-narrowing methods,1–3 curve-fitting proce-

dures,4 or a combination of both.5 The former provides more

resolved spectra by narrowing the component bands, while the

latter potentially allows the estimation of their band parameter,

such as positions, widths and area.

Deconvolution has become one of the most useful methods for

resolving these problems. For example, Fourier self-deconvolu-

tion (FSD) method, developed by Kauppinen et al. is the most

common method used in infrared spectroscopy.3 However,

deconvolution is an ill-posed inverse problem. Because it needs to

recover a high-quality spectrum and instrument response func-

tion simultaneously from a degraded spectrum. To settle the

problem, a prior knowledge is introduced to constrain the solu-

tion space of the latent spectrum and instrument response
Science and Technology on Multi-spectral Information Processing
Laboratory, Institute for Pattern Recognition and Artificial Intelligence,
Huazhong University of Science and Technology, Wuhan, Hubei, 430074,
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function. In summary, there are two major kinds of prior: latent

spectral prior and kernel prior.

The latent spectral prior, may include three kinds of

constraints such as positivity, smoothness and the same charac-

teristics between the latent and degraded spectra. It is usually

assumed that the spectral intensity is positivity. The smoothness

constraints include Tikhonov regularization6 and its variants.6 In

recent years, a high-order statistical method7 was introduced to

estimate latent spectrum and instrument response function

simultaneously. It is assumed that the second-order central

moment of the degraded and latent spectra are the same. The

latent spectrum is obtained by maximizing the high-order even

moments of the degraded spectrum. It seems that this approach

narrows spectra but enlarges the noise, especially under low

signal-to-noise ratio (SNR). Maximum entropy deconvolution8,9

(MaxEntD) method considers the latent spectrum and the

degraded spectrum as different distributions. Then, a unique

solution (latent spectrum) is chosen by maximizing the Shannon-

entropy9 or minimizing the cross-entropy10 (or Kullback–Leibler

distance) between the two distributions. While MaxEntD

uses the entropic prior, massive inference uses a so-called

‘‘atomic’’ prior.8

As for the kernel prior, two aspects of the a prior are often

used, kernel shape and slit width. First, the kernel shape is

usually selected on theoretical or practical grounds, and basically

restricted to triangle,11 Lorentzian,12 Gaussian and Voigt13

function. More recently, L�orenz-Fonfr�ıa adequately discussed

eight different filters, and the conclusion was that the filters, most

suited to the FSD method, were the Bessel, BL3 and Gaussian

filters.14 Second, for the kernel slit width, Senga estimated the

bandwidth of the degraded spectrum by a complex process.11

L�orenz-Fonfr�ıa discussed highly overlapped bands and
This journal is ª The Royal Society of Chemistry 2012
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estimated the mean Lorentzian bandwidth of the component

bands.15 For simplicity’s sake, slit width usually assumes that the

bandwidth of the measured spectra is equal to the width of the

narrowest spectral band. It is considered that all the peaks can be

recovered if the narrowest peak has been recovered. However,

the measured width is often inaccurate, especially when the

spectral is seriously degraded.

The major novelty of the proposed algorithm is that it can

estimate the kernel slit width and latent spectrum simulta-

neously. To accomplish these results, our technique benefits

from three main contributions. First, our probabilistic model

unifies blind and non-blind deconvolution into a single MAP

formulation. Second, we introduce Huber–Markov a prior

knowledge to preserve sharp peaks and suppress noise using the

first-order derivative of actual spectrum. Third, to estimate the

actual width of the instrumental response, we employ a para-

metric Gaussian form as kernel shape prior. To our knowledge,

few publications include the both spectrum and kernel prior (or

regularization) constraint for spectral deconvolution. In this

paper, a MAP-based model is proposed for spectroscopic

deconvolution. This algorithm can effectively take advantage of

the a prior knowledge to estimate the kernel width and latent

spectrum simultaneously.

The remainder of this work is organized as follows. In Section

2, the spectrum observation model and spectral characteristics

are formulated. The MAP-based recovery model is presented in

Section 3. In Section 4, the optimization method and parameter

determination are described. Experimental results are provided

in Section 5, and Section 6 concludes this paper.
2 Analysis of spectral characteristics

For both coherent and incoherent irradiation, the spectroscopic

data is measured by a spectrophotometer. The degraded spec-

trum can usually be mathematically modeled as a convolution of

the actual spectrum with the instrument response function, as

well as a random process superposed on the useful signal which

describes random errors arising during measurement of the

spectrum.16,17 The relationship between the measured spectrum

and actual spectrum can be expressed as

g(v) ¼ f(v)5h(v) + n(v), (1)

where g(v) is the measured spectroscopic data, and5 denotes the

convolution operation f(v)5h(v) ¼Pkhkf(v � k), f(v) stands for

actual spectrum and h(v) stands for the point spread function

(PSF, also called blur kernel), which collects the intrinsic line-

shape function and the instrumental broadening. It usually

supports that the length of h(v) is much smaller than f(v).

We classify the IR spectral data into steep and plain regions,

according to the first-order derivative of the actual spectrum. The

former contains abundant absorption bands, and the latter

contains few. Bold lines represent the steep regions, and thin lines

represent the plain regions, which are shown in Fig. 1A. Our

intriguing finding is that given the same noise over the whole

spectrum, the plain and steep regions degrade differently. In

other words, the plain and steep regions have different sensitiv-

ities to the same noise. For steep regions, the variation of

absorption intensity is large, and the noise is not obvious. This
This journal is ª The Royal Society of Chemistry 2012
can be seen in Fig. 1B. As for the plain regions, whether the

absorption intensity is strong or not, the noise is significant. We

suggest that the steep regions of the degraded spectrum are more

similar to the original spectrum than those of the plain regions.

On one hand, if the strong smoothness constraint is imposed on

the whole spectrum, the noise will be suppressed but the steep

regions will be smoothed. On the other hand, if the mild

constraint is incorporated, the steep regions are preserved but

much residual noise is left. Based on this idea, we take advantage

of the structure information of the spectrum and propose a new

adaptive constraint to preserve the details in the steep regions

while suppressing the noise in the plain regions.

Furthermore, our study shows that the convolution kernel can

be described as a convolution of many factors, such as slit

function, grating response, and circuit response, etc. And the

convolution kernel approaches to a Gaussian or Lorentzian-like

function. KatraSnik proposed that the PSF of the degraded

acousto-optical spectrum can be modeled as a parametric func-

tion three side-lobe sinc2.18 Inspired by this, an attempt was

made to use a parametric function to model the PSF. We

demonstrate the gains obtained by reducing the blind spectrum

deconvolution problem to a semi-blind deconvolution (SBD), in

which the kernel is assumed to belong to a class of parametric

functions.
3 Our model

Our probabilistic model unifies blind and non-blind deconvo-

lutions into a single MAP formulation. In recent years, the

MAP estimation method, which inherently includes a priori

constraints in the form of prior probability density

functions (PDFs), has enjoyed increasing popularity. It has been

central to the solution of ill-posed inverse problems in a wide

range of applications,8,10,19 such as spectrum denoising, quanti-

tative investigation, and others. We use the MAP framework for

spectral deconvolution of an IR spectrum. The purpose is to

realize the MAP estimate of a desired spectrum f(v) and the PSF

h(v), given the degraded spectrum g. It can be computed by

(f̂ ,ĥ) ¼ arg max p(f,h|g) (2)

Applying Bayes’s rule, eqn (2) becomes

�
f̂ ; ĥ

� ¼ arg max
pðgj f ; hÞpð f ÞpðhÞ

pðgÞ : (3)

Since p(f,h|g) is independent of g, p(g) can be considered as a

constant, and hence, eqn (3) can be rewritten as

(f̂ ,ĥ) ¼ arg max p(g|f,h)p(f)p(h). (4)

Using the monotonic logarithm function, eqn (4) can be

expressed as

(f̂ ,ĥ) ¼ arg max{log p(g|f,h) + log p(f) + log p(h)}. (5)

It can be seen that three PDFs need to be constructed. It is very

important that what and how much prior is introduced to the

kernel and spectrum. We now define these terms, and describe

our optimization.
Analyst, 2012, 137, 3862–3873 | 3863
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Fig. 1 (A) Original IR spectrum. Bold line represents steep regions; thin line represents plain regions. (B) Degraded (overlapped and noisy) spectrum.

Fig. 2 Huber function with different m’s.

Fig. 3 Different kernels with the same x.
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3.1 Definition of the probability terms

Likelihood p(g|f,h). The first is the likelihood density function,

which provides a measure of the conformance of the spectrum to
3864 | Analyst, 2012, 137, 3862–3873
the observed spectrum according to the spectrum observation

model. It is determined by the probability density of the noise

vector in eqn (1), i.e., p(g|f,h) ¼ p(n). Spectrum noise is modeled

as a set of independent and identically distributed (IID) noise

random variables for all spectral points, each of which follows a

Gaussian distribution. Under these assumptions, the probability

density is given by

pðnÞ ¼
Y
i

N ðnij0; siÞ ¼
Y
i

1ffiffiffiffiffiffi
2p

p
si

exp

 
� ðni � 0Þ2

2s2
i

!

¼ 1� ffiffiffiffiffiffi
2p

p
s
�N exp

 
�
XN
i

ð fi5hi � giÞ2
2s2

!

¼ 1

M1

exp

�
� 1

2s2
k f5h� gk2

�
:

It can be rewritten as

pðgj f ; hÞf 1

M1

exp

�
� 1

2s2
k f5h� gk2

�
: (6)

In this expression, ||$|| denotes the 2-norm operator and M1 is

the constant coefficient.

Prior p(f). The second density function in eqn (5) is the spec-

trum prior, which imposes the spatial constraints on the spec-

trum. According to the analysis of the spectral, we find that the

steep and plain regions obey different local distributions. Some

conventional models such as Laplacian prior constrain and

Gauss–Markov prior regularize the corresponding ill-posed

problem by forcing spatial smoothness on the spectrum. For

example, the general form of the Markov prior is denoted by

pð f Þ ¼ 1

M2

exp

 
� a

X
i

rð f 0Þ
!
: (7)

In this expression, M2 is the constant. The quantity f0 is a

spatial activity measure to intensity fi, which is often formed by

first or second-order differences.20 In this paper, f 0 ¼ ( fi+1� fi)/2.

When r($) is a quadratic potential function as in eqn (7), the

corresponding prior is regarded as Gauss–Markov
This journal is ª The Royal Society of Chemistry 2012
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Fig. 4 Deconvolution with noise-free. (A) Original IR spectrum of dimethyl phosphite (C2H7O3P) from 4000–400 cm�1. (B) Instrument response

function with Gaussian shape and s ¼ 18 cm�1. (C) Degraded spectrum convoluted between (A) and (B). (D) Deconvolution by FSD method with a

predefined Gaussian kernel s¼ 18 cm�1. (E) Deconvolution using the GMSBD proposed by us. (F) Deconvolution using the suggestedHMSBDwithout

predefined kernel. Bottom of the spectrum is the residual noise which equals to original spectrum subtracts the deconvoluted result.
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r(t) ¼ t2. (8)

The criticism of the use of the Gauss–Markov prior (and the

Laplacian prior) is that some high-frequency objects in the

spectra tend to be removed. Therefore, a detail-preserving

Huber–Markov spectral prior is employed in the paper. This

prior can effectively preserve the detail information in the

spectra.21 The difference between the Huber–Markov prior and
This journal is ª The Royal Society of Chemistry 2012
the Gauss–Markov prior is only the potential function r($). The

Huber function is defined as

rðtÞ ¼
�

t2 jtj#m

2mjtj � m2 jtj.m
; (9)

where m is a threshold parameter separating the quadratic and

linear regions,21 as shown in Fig. 2. It is easy to see that the
Analyst, 2012, 137, 3862–3873 | 3865
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Fig. 5 (A) Convergence curve of the estimated width s of the blur kernel

as a function of the iteration number in the HMSBD of the noise-free

spectrum (Fig. 4C). (B) Estimated kernel and true kernel.

Fig. 6 Deconvolution results by FSD14 method with incorrect kernels.

(A) Infra-deconvolution with Gaussian kernel with s ¼ 10 cm�1. (B)

Over-deconvolution with Gaussian kernel with s ¼ 26 cm�1.
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Gauss–Markov prior can be regarded as a special case of the

Huber–Markov prior when m approaches +N.

Prior p(h). The third density function in eqn (5) is the recovery

kernel prior. To get the kernel PDF, we discuss the kernel prior

from two aspects. On one hand, the PSF can be modeled with a

parametric function according to a prior knowledge of the kernel

shape. Symbol hx stands for the kernel shape function by the

bandwidth x. In case of Lorentzian function kernel, x stands for

the half width at half maximum g,

hgðvÞ ¼ 1

p

g

ðv2 þ g2Þ ; (10)

and for Gaussian function, x ¼ ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
s also can be referred to

the width of the kernel, shown in Fig. 3,

hsðvÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp

�
� v2

2s2

�
: (11)

Other kinds of kernel shape can be similarly expressed, such as

triangle, Bessel, Vogit and so on. Without any a prior knowledge

about the kernel, the kernel recovered from measurement spec-

trum often approximates a Gaussian-like line shape,7 called blind

deconvolution (BD). In this paper, we just choose the Gaussian

line shape function to elaborate the semi-blind deconvolution

(SBD).
3866 | Analyst, 2012, 137, 3862–3873
On the other hand, the kernel width of PSF is represented by

the kernel smoothness prior: the width of the Gaussian corre-

sponds to its smoothness. The larger the width of kernel is, the

smoother the kernel is. The kernel smoothness is measured by its

first-order derivative. Senga choose the triangle function11 as

kernel function, and Laplacian-prior should be used. As for the

Lorentzian and Gauss kernel (shown in Fig. 3), Gauss–Markov

prior was chosen to constrain the smoothness of the kernel.

pðhÞf 1

M3

exp

 
� b

X
i

��h0
s

��2!: (12)

In this expression, h0 ¼ (hi+1 � hi)/2.

Substituting eqn (6), (7) and (12) in eqn (5), our MAP problem

is transformed to an object minimization problem that minimizes

the negative logarithm of the probability we have defined, i.e., the

object E(f,h) ¼ �s2log(p(f,h|g)). After some manipulation, M1,

M2 and M3 can be safely dropped, we get the objective

functional:

E(f,h) ¼ ½||f 5 hs � g||2 + a
P

r(f0) + b
P

|h0s|2, (13)

in which the first term is the data fidelity term,
P

r(f0) and
P

|h0s|2

acts as the regularization terms. These are balanced by a and b,

which can now be called the regularization parameters. Our

configuration of a and b will be described in next section.
This journal is ª The Royal Society of Chemistry 2012
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Table 1 Band distortions in deconvoluted spectra by FSD, GMSBD and HMSBD in Fig. 4

Band positiona 3002 2959 1266 1187 1046 975 825 780 547 501 RMSEb

Position FSD �9 0 +1 �1 +2 +4 0 +1 +1 +6 3.755
GMSBD +3 0 +2 0 �1 +6 0 �2 �1 +4 2.664
HMSBD 0 0 �1 0 1 +6 0 �2 �1 +4 2.429

a In cm�1, obtained from the band maximum. b Root mean square error in the determination of the position.
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According to the selection of potential function, we call the

proposed methods Huber–Markov semi-blind deconvolution

(HMSBD), Gauss–Markov semi-blind deconvolution

(GMSBD), respectively.

4 Optimization

An efficient alternative approach, based on the lagged diffusivity

fixed pointed scheme and gradient descent, was presented by You

and Kaveh,22 followed by Chan and Wong.23 We employ the

algorithm from image restoration to the spectral deconvolution.

The gradient descent optimization method is used for the

minimum problem in eqn (13). We solve for f and h by applying

alternating minimization. The first-order necessary conditions

associated with the alternating minimization of the object func-

tion can be expressed as follows.

4.1 Optimizing f

In this step, we fix h and optimize f. The functional E(f,h) can be

simplified to E(f) by removing constant-value terms:

E(f) ¼ ½||f 5 hs � g||2 + a
P

r(f0), (14)

which is convex on IR and the solution, when it exists, is unique

and can be obtained by gradient descent method. Minimization

of the objective functional (14) with respect to f is carried out

using the Euler–Lagrange (E–L) eqn (15), with Neumann

boundary conditions. The E–L equation is a linear partial

differential equation, the derivation is presented as follows:

dE

df
¼
X
i˛L

�
vF

vf
� d

dx

�
vF

vf 0

��
: (15)

The corresponding gradient element of the prior term is given

by

vF

vf
¼ ð f5hs � gÞ5hsð�vÞ

and

d

d x

 
vF

vf 0

!
¼ 2f 00 j f 0j#m

0 j f 0j.m
:

(

Therefore, eqn (15) is rewritten as

dE

df
¼ ð f5hs � gÞ5hsð�vÞ � 2af 00 j f 0j#m

ð f5hs � gÞ5hsð�vÞ j f 0j.m
:

(
(16)

For the Gauss–Markov prior, its E–L equation is eqn (17)

(top),
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dE

df
¼ ð f5hs � gÞ5hsð�vÞ � 2a f 00: (17)

Then, the latent spectrum is solved by employing a successive

approximations iteration

f̂ nþ1 ¼ f̂ n þ tn

�
� dE

dfn

�
; (18)

where n is the iteration number, and tn is the time step. If tn is too

small, the convergence will be very slow. On the contrary, if it is too

large, the algorithm will be unstable or divergent. By making a

second-order Taylor series approximation to the object function at

the current state f̂ n, a quadratic step size approximation becomes24

tn ¼ ðVEð fnÞÞTVEð fnÞ�
VEð fnÞ

��
V2Eð fnÞ

�
VEð fnÞ

; (19)

whereVE(fn) andV
2E(fn) are the first-order and Hessian matrix of

the objective functional E(f), respectively.

4.2 Optimizing h

In this step, we fix f and compute the optimal h. Eqn (13) is

simplified to

E(h) ¼ ½||hs 5 f � g||2 + b
P

|h0s|2. (20)

Minimization with respect to the scalar parameter s is deter-

mined by differentiation of the objective functional eqn (20)

vE

vs
¼
X
i˛L

ðhs5f � gÞ
�
vhs

vs
5f

�
i

þ b
X
i˛L

�
v

vs
jh0

sj2
�

i

¼ 0; (21)

where in eqn (21)

vhs

vs
¼ 1ffiffiffiffiffiffi

2p
p

s2
exp

�
� v2

2s2

�
$

�
v2

s2
� 1

�
; (22)

and

h
0
s ¼

vhs

vv
¼ � vffiffiffiffiffiffi

2p
p

s3
exp

�
� v2

2s2

�
; (23)

v

vs
j h0

sj2¼
v2

ps7
exp

�
� v2

s2

��
v2

s2
� 3

�
: (24)

Eqn (21) is solved for s using the bisection method. The

discrete support of the Gaussian kernel is limited to 6s + 1, which

in our experiments is much smaller than the spectrum size. The

numerical integral of hs is normalized to 1, and the s0 width is

initialized to 1.

We declare convergence when for more than two consecutive

iterations both the kernel width and latent spectrum change less
Analyst, 2012, 137, 3862–3873 | 3867
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Fig. 7 Comparison between HMSBD and FSD method with different levels of noise, SNR ¼ 200 (left column) and SNR ¼ 100 (right column). (A)

Degraded spectra, equal to noise-free spectrum (Fig. 4C) plus Gaussian white noise. (B) Deconvolution using the FSD14 method (narrow factor of 1.5

and 1.4). (C) Deconvolution using the suggested HMSBD method. (D) Convergence curves of the estimated kernel width s under different SNRs by

HMSBD.

3868 | Analyst, 2012, 137, 3862–3873 This journal is ª The Royal Society of Chemistry 2012

D
ow

nl
oa

de
d 

by
 H

ua
zh

on
g 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
&

 T
ec

hn
ol

og
y 

on
 1

7 
O

ct
ob

er
 2

01
2

Pu
bl

is
he

d 
on

 0
5 

Ju
ly

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2A
N

16
21

3J

View Online

http://dx.doi.org/10.1039/c2an16213j


Fig. 8 Deconvoluted results by the suggested GMSBD method using the same parameters setting with HMSBD. (A) SNR ¼ 200. (B) SNR ¼ 100.

Table 2 Figures of merit for the performance of FSD, GMSBD and
HMSBD methods under three SNR conditions

Merits SNR

Method

FSD GMSBD HMSBD

CC Noise-free 0.9993 0.9990 0.9996
200 0.9984 0.9980 0.9989
100 0.9973 0.9975 0.9981

WCC Noise-free 0.9994 0.9992 0.9996
200 0.9989 0.9985 0.9991
100 0.9977 0.9978 0.9984
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than threshold values: |sn+1 � sn| < d1 and ||fn+1 � fn||/||fn|| < d2,

where d1 and d2 are predetermined coefficients. The deconvolu-

tion procedure described in this section is summarized as follows:
In this paper d1 and d2 are small positive constants between

10�9 and 10�7.

4.3 Optimization details and parameters

Algorithm 1 shows the skeleton of our algorithm, where the

iterative optimization steps and the termination criteria are

given. Two parameters in our algorithm, i.e., a and b given in
This journal is ª The Royal Society of Chemistry 2012
eqn (13), are adjustable. a and b correspond to the probability

parameters in eqn (7) and (12) for the spectrum and kernel priors,

and their values are adapted from their initial values over itera-

tions of the optimization. We set a ¼ a/l1, b ¼ b/l2. Then, after

each iteration of optimization, the values of a and b are divided

by l1 and l2, respectively, where we usually set l1 ¼ 1.01, l2 ¼
1.02 to reduce the influence of the spectrum prior and increase

that of the spectrum likelihood.

As noted above, the multiscale statistics require a noise esti-

mate for evaluation. We have evaluated several similar tech-

niques in common use for estimating Gaussian noise based on

various differencing schemes that, in general, give comparable

results in simulations but are all upwardly biased. We use median

absolute differences to estimate d defined in the following

equations.25,26

d ¼ 1:4826ffiffiffi
2

p median
n
jgi � gi�1j; i ¼ 2; /; n

o
: (25)

It is worth noting that the method proposed by Turner27 using

second-order difference spectra followed by filtering to remove

spike and/or signal artifacts showed the minimum bias from a

brief survey of available methods with synthetic spectra.

Initializing the egularization parameters, we set a0 ¼ 20d, b0 ˛
[250,350]. In the sequel, spectrum intensities are normalized to

the range [0,1].
5 Experimental results and discussion

To show the performance of the proposed algorithm, a series of

experiments were carried out on various simulated and real

spectra. In the following experiments, we evaluated three kinds

of performance of the proposed method, namely, estimation of

the spectral slit width, spectral narrowing and noise suppression

with different SNRs.

In order to show that the proposed algorithm was not very

sensitive to the parameter set, the same parameters were used in

the following deconvoluted experiments, i.e. a0 ¼ 20d, b0 ¼ 300,

m ¼ 0.02. The Fourier self-deconvolution14 (FSD) and GMSBD

methods were also tested to make a comparative analysis with

the proposed algorithm. For the SBD method, we tested the
Analyst, 2012, 137, 3862–3873 | 3869
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Fig. 9 Real IR spectrum experiment. (A) IR spectrum of aliphatic,

carboxylic acid, ether from 4000 to 1000 cm�1. (B) Deconvolution using

the FSD14 method with the kernel width 15.8 cm�1 estimated by HMSBD.

(C) Deconvolution using the suggested HMSBD method.

Fig. 10 Real Raman spectrum experiment. (A) Raman spectrum of

xanthan from 3600 to 950 cm�1. (B) Deconvolution using the FSD14

method with kernel width 16.0 cm�1. (C) Deconvolution using the sug-

gested HMSBD method.

D
ow

nl
oa

de
d 

by
 H

ua
zh

on
g 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
&

 T
ec

hn
ol

og
y 

on
 1

7 
O

ct
ob

er
 2

01
2

Pu
bl

is
he

d 
on

 0
5 

Ju
ly

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2A
N

16
21

3J

View Online
performance Gauss–Markov and Huber–Markov prior. Because

the FSD method needed a known PSF, we applied a predefined

kernel.
5.1 Simulation and experimental spectral data

For the simulated data, following the eqn (1), we simulated

degraded spectra data by computer on the basis of the experi-

mental IR spectra. Fig. 4A presents the IR spectrum of dimethyl
3870 | Analyst, 2012, 137, 3862–3873
phosphite (C2H7O3P) from 4000 to 400 cm�1 at 1 cm�1 resolu-

tion. s and SNR represent the overlapping degree of adjacent

bands and the noise level, respectively. In general, we convolved

Fig. 4A with a Gaussian kernel width s of 18 cm�1, as illustrated

in Fig. 4B, to generate the degraded (overlapped and noisy)

spectrum (Fig. 4C). The degraded spectrum becomes much

smoother and less resolved, and the bands become wider and

lower. To investigate the robustness to noise of the deconvolu-

tion methods, white Gaussian noise was added to the degraded
This journal is ª The Royal Society of Chemistry 2012
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Fig. 11 Real Raman spectrum experiment. (A) Raman spectrum of

D(+)-glucopyranose from 1500 to 10 cm�1. (B) Deconvolution using the

FSD14 method with kernel width 9.5 cm�1. (C) Deconvolution using the

suggested HMSBD method.
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spectrum (Fig. 4C) with two different SNRs of 200 and 100, as

shown in Fig. 7A1 and A2, respectively.

For the real data, the spectra are sampled on a Perkin

Elmer System 2000 interferometer using a Nd:YAG laser.

Raman spectra will be recorded using the following parameters:

excitation (1064 nm), laser power (400 mW), Raman

shift (3600–0 cm�1), accumulations (256), resolution (1 cm�1).

We downloaded the measurement from the online supply

network.
This journal is ª The Royal Society of Chemistry 2012
5.2 Estimation of spectral mean Gaussian bandwidth

In Fig. 4C, it is difficult to distinguish the peak at 825 cm�1 from

that 780 cm�1, and at 547 from 501 cm�1. There are overlapping

bands between the peaks such as 1266 and 1187 cm�1, 1046 and

975 cm�1. First, we applied three methods on the noise-free

degraded spectrum. For FSD, we used the accurate Gaussian

kernel in the same way as simulation (Fig. 4B). For GMSBD and

HMSBD, we started from aGaussian kernel with an initial width

s0 ¼ 1. Using the eqn (25), we estimate the d ¼ 0.00081, and we

set a0 ¼ 0.02.

Fig. 4D–F show deconvolution results by FSD (with a known

kernel, shown in Fig. 4B), GMSBD, and the proposed algorithm.

All the deconvoluted spectra are clearly resolved. Visual analysis

of deconvoluted spectrum clearly shows that the HMSBD

method splits the overlapped peaks very well. In Fig. 4F

(HMSBD method), the peak at 820 cm�1 is split into two peaks

825 and 780 cm�1, respectively. The peak at 545 cm�1 is split into

peaks at 574 and 501 cm�1. While in Fig. 4D (FSD method) and

Fig. 4E (GMSBD method), the overlapping bands are separated

slightly. Therefore, for the noise-free spectrum, it seems clear that

the HMSBD not only estimates the blur kernel reliably, but also

produces a much narrower spectrum with more details than the

FSD method.

The width s converges at about 18.2 cm�1 after 602 iterations

(see Fig. 5A), and the estimated kernel was plotted in Fig. 5B.

The estimated kernel by the HMSBD method is a close match to

the actual kernel.

We also tested the FSD method with inaccurate kernels. It is

usually the case that the bandwidth of the measured spectra is

equal to the width of the narrowest spectral band. However, the

complexity of the natural spectrum makes it easy to obtain

smaller or larger values than the actual value. To obtain deeper

understanding of these phenomena, we selected the narrower and

wider kernels to recover the degraded spectrum, respectively. The

outcome is shown in Fig6A and B, where the Gaussian kernel

width is 10 and 26 cm�1. Compared to the actual spectrum

(Fig. 4D), the recovery spectrum in Fig. 6A is severely infra-

deconvoluted, and in Fig. 6B shows obvious over-deconvolution.

This demonstrates that the non-blind deconvolution such as

FSD, is sensitive to the width of the kernel. At the source of this

problem is the aspiration for general kernel width which needs to

measure manually. On the contrary, the proposed method

HMSBD method does not suffer from these problems.

Furthermore, for the deconvoluted spectra by FSD, GMSBD

and HMSBD method, the band distortions were investigated. In

the original spectrum (Fig. 4A), the ten absorbance bands at

3002, 2959, 1266, 1187, 1046, 975, 825, 780, 547, 501 cm�1 are

taken as references. Table 1 lists these bands distortions in

position, width, height and area between the deconvoluted and

actual spectrum (Fig. 4A). Roots of mean square error (RMSE)

of these distortions are calculated. In terms of RMSE, the

distortion of the positions is smaller than those by the FSD

method.
5.3 Huber–Markov spectral semi-blind deconvolution

Effect of the noise. For the results of FSD, we execute the

source code from the authors and hand-tune parameters to
Analyst, 2012, 137, 3862–3873 | 3871
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produce the best possible results. And the kernel used in FSD is

the Gaussian line-shape. For SNR ¼ 200, we compute the d ¼
0.0041, and set a0¼ 0.05; for SNR¼ 100, d¼ 0.0078 and set a0¼
0.08. Fig. 7B1 and B2 and C1 and C2 present the deconvolution

results for noisy spectra with FSD and HMSBD respectively.

The residual noise is shown at the bottom of the result. There-

fore, we conclude that the proposed HMSBD method recovers

more spectral details and suppresses more noise than FSD.

Fig. 7D presents the estimated kernel width from noisy spectra

by the HMSBDmethod. It can be seen that, as SNR is decreased,

the estimated width of the kernel becomes smaller; as a result, the

recovered spectrum becomes less deconvoluted and with more

residual noise. On the other hand, for the better noise suppres-

sion, a larger a should be chosen to favor a smoother resolution,

which will also result in a narrow kernel, and consequently lead

to infra-deconvolution. This is why the spectrum in Fig. 7D

(SNR ¼ 100) is much less deconvoluted than that in Fig. 7D

(SNR ¼ 200). Therefore, for the proposed HMSBD method,

regularization parameter a should be chosen as a balance

between narrowing capability and noise suppression, especially

at low SNRs.

Effect of Huber function. To demonstrate the effectiveness of

the Huber function, we compare the performances of the

HMSBD (Huber–Markov prior) method with GMSBD (Gauss–

Markov prior). With the same parameter setting, Fig. 8A and B

show the results of the GMSBD method with SNR ¼ 200 and

100. It is clear that the whole spectrum consists of plain regions

and steep regions. On one hand, the ability to suppress noise of

HMSBD is the same as GMSBD in the plain region. On the other

hand, the percentage of steep regions is far less than those of the

plain regions. Therefore, the total difference between two

methods is not significant. However, for the GMSBD method,

the noise will be suppressed but the steep regions will be also

smoothed. The HMSBD can suppress noise adaptively and

preserve the detail of the steep regions. We suggest that the

HMSBD method suppresses noise in the plain regions and

preserves detail in the steep regions.
5.4 Quantitative assessment

To go further and provide a quantitative assessment of the new

spectroscopic deconvolution method, two quality indexes are

employed. These are the correlation coefficient (CC) and

weighted correlation coefficient (WCC). The CC is defined as

CC ¼
PN
i¼1

	
fi � f


	
f̂ i � f̂



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i�1

	
fi � f


2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

	
f̂ i � f̂


2s

the horizontal bar denotes the average of all the spectroscopic

data. Pearson’s CC represents the average similarity between the

trends of the actual and recovered spectra, and the larger value

denotes the better match; for example, CC ¼ 1 means a perfect

match.

The WCC method28 is used to evaluate the similarity between

the original spectrum and the object spectrum. It is defined by
3872 | Analyst, 2012, 137, 3862–3873
WCC ¼
PN
i¼1

wi fi � f
� �	

f̂ i � f̂



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i�1

wið fi � f Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1

wi

	
f̂ i � f̂


2s ;

where w is the weight array, and the horizontal bar denotes the

weighted means. The weight array w was constructed in terms of

the intensities of actual spectrum and the difference between the

actual and recovered spectra.

Table 2 shows the resulting CC and WCC for each method

based on simulated data with different SNRs. It is clear that

HMSBD is superior to FSD and GMSBD under all SNR

conditions.

Therefore, we conclude that the proposed HMSBD method

recovers more spectral details and suppresses more noise than the

FSD and GMSBD methods.

5.5 Deconvolution of experimental spectra

Three more challenging real examples are shown in Fig. 9–11, all

contain overlapping peaks and random noise. The top, middle

and bottom rows correspond to the original spectra, FSD and

HMSBD results. There is no actual bandwidth to the experi-

mental spectra, the bandwidth used in FSD method is estimated

from HMSBD.

Fig. 9A shows the infrared absorbance spectrum of aliphatic,

carboxylic acid, ether from 4000 to 400 cm�1 at 1 cm�1. The

spectrum is deconvoluted by FSD using 15.8 cm�1 Gaussian width

(equal to the estimated width by HMSBD). The peak at 1740 cm�1

is split into two peaks at 1766 and 1736 cm�1, respectively. Here,

we computed d ¼ 0.0015 and set a0 ¼ 0.03. The Gaussian width

estimates by HMSBD method equals 15.8 cm�1 (not shown). The

peak at 1740 cm�1 is split into two peaks at 1762 and 1736 cm�1,

respectively. It seems that the deconvolution result in Fig. 9C is

more resolved than that in Fig. 9B.

The HMSBD method is also applied in Raman spectra.

Fig. 10A is the Raman spectrum of xanthan29 (C35H49O29) from

3600 to 1050 cm�1 at 1 cm�1. The deconvolution spectrum shown

in Fig. 10B is far more resolved. Here, we computed d ¼ 0.0033

and set a0 ¼ 0.07. The HMSBD method estimates the Gaussian

width to be 15.8 cm�1. The peaks 2938 and 2902 cm�1 are split far

from each other. Five bands are resolved between 1500 and 1160

cm�1, and the peak 1099 is split into five peaks, 1158, 1126, 1095,

1069 and 1050 cm�1. The FSD method also works well in the

accurate kernel achieved from HMSBD. The result is shown in

Fig. 10B.

Fig. 11A shows the 1495 length Raman spectral data of D(+)-

glucopyranose30 (C6H12O6) from 1500 to 5 cm�1 at 1 cm�1.

Fig. 11C is the deconvoluted data. Here, we compute d ¼ 0.0006

and set a0 ¼ 0.01. The kernel width s estimated by HMSBD

approximates 9.5 cm�1. The peak at 406 cm�1 is split into two

peaks at 396 and 407 cm�1. The peaks at 542, 1075 and 1120 cm�1

are also split into two peaks. Noise is suppressed very well from

200 to 5 cm�1, and closes nearly to a line. The result from the

FSD method (Fig. 11B) shows more noise.

Computing times in the above examples are between 35 and 55

seconds. The proposed algorithm is implemented by MATLAB

R2010a on a computer with Intel Core 2 Duo 2-GHz CPU, 2-G

RAM, and Microsoft Windows XP operating system.
This journal is ª The Royal Society of Chemistry 2012
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6 Conclusions

In this paper, we show how the issue of overlapping peaks can be

considered as an MAP-posed problem and solved by minimizing

an object functional that includes a likelihood term and two prior

terms. The major novelty of the proposed algorithm is that it can

estimate the kernel slit width and latent spectrum simultaneously.

The method does not require a known PSF in advance but models

as a parametric function by combining a prior knowledge about the

instrumental response characteristic. Moreover, the Huber func-

tion is introduced to adaptively describe the steep and plain regions

characteristic of spectral data. Experimental results suggest that the

method can recover spectral structural details as well as suppress

noise effectively. In particular, owing to no need for a known PSF,

the new method has considerable value in practice. It is worth

noting that although the Gaussian kernel only is discussed here,

any other kernels with parametric forms, such as Lorentzian or

Voigt functions can be applied to the HMSBD method.

We recognize an unknown molecular based on this work by

extracting spectrum characteristics such as band numbers, posi-

tions, widths, area and so on. We will examine this finding in

future research.
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