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Abstract

Learning-based image dehazing methods have achieved
marvelous progress during the past few years. On one hand,
most approaches heavily rely on synthetic data and may
face difficulties to generalize well in real scenes, due to the
huge domain gap between synthetic and real images. On the
other hand, very few works have considered the varicolored
haze, caused by chromatic casts in real scenes. In this work,
our goal is to handle the new task: real-world varicolored
haze removal. To this end, we propose a physically disentan-
gled joint intra- and inter-domain adaptation paradigm, in
which intra-domain adaptation focuses on color correction
and inter-domain procedure transfers knowledge between
synthetic and real domains. We first learn to physically
disentangle haze images into three components complying
with the scattering model: background, transmission map,
and atmospheric light. Since haze color is determined by
atmospheric light, we perform intra-domain adaptation by
specifically translating atmospheric light from varicolored
space to unified color-balanced space, and then reconstruct-
ing color-balanced haze image through the scattering model.
Consequently, we perform inter-domain adaptation between
the synthetic and real images by mutually exchanging the
background and other two components. Then we can recon-
struct both identity and domain-translated haze images with
self-consistency and adversarial loss. Extensive experiments
demonstrate the superiority of the proposed method over the
state-of-the-art for real varicolored image dehazing.

1. Introduction
Haze, as a common weather phenomenon, would result

in low contrast and severe visibility degradation, which not
only leads to poor visual quality but also does serious harm
to high-level vision tasks, such as scene classification [35],
object detection [25] and semantic segmentation [41]. The
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Figure 1. The visual examples of dehazing results for real-world
varicolored haze images. The second and third column show the
results of DA-Dehazing [42] and proposed method, respectively.

haze procedure can be mathematically formulated via the
well-known atmosphere scattering model [29, 34]:

I(x) = J(x)t(x) +A(1− t(x)), (1)
where I(x) is observed haze image, and J(x) is haze-free
background to be restored. A and t(x) = e−βd(x) denote
atmospheric light and transmission map, and β and d(x)
represent scattering coefficient and depth respectively. The
goal of dehazing is to estimate J(x) from hazy input I(x).

The image dehazing has been extensively studied during
the past few years [6, 7, 11, 18, 25, 28, 31, 39, 50]. Benefitting
from powerful representation ability of convolutional neural
networks (CNNs), CNN-based supervised learning methods
have made marvelous progress [8, 12,13, 32,37, 45]. Since it
is difficult to obtain labeled clean groundtruth, it is widely
accepted to simulate paired clean/haze images via the scat-
tering model for CNN training. However, the inter-domain
gap between real and synthetic data makes these supervised
methods hard to generalize well for the real haze images. To
overcome this issue, the semi-supervised [9, 27, 33, 42] and
the unsupervised dehazing methods [17, 23, 24, 30, 46, 47]
have been naturally proposed. The unsupervised methods
mainly utilize the prior knowledge of the real images by min-



imizing the unsupervised loss function, such as dark channel
prior [18]. The semi-supervised methods not only utilize real
images but also incorporate synthetic images for network
training. The researchers [9, 27, 33, 42] mainly adopt the
domain adaptation technique to transfer the knowledge from
synthetic domain to the real haze domain. Although these
methods have greatly alleviated the inter-domain shift issue,
few of them have considered the intra-domain issue, namely
the varicolored haze space in real-world scenes.

The varicolored haze is mainly caused by various parti-
cles with different sizes and scattering characteristics [14],
as shown in Fig. 1. Most of the previous methods employ the
hand-crafted white balance and contrast enhancement tech-
niques to eliminate the color distortion [1, 2, 19]. Recently,
the learning-based varicolored image dehazing methods have
been proposed [14, 40]. For example, Dudhane et al. [14]
proposed a color correction module based on gray world
assumption [38] to better estimate accurate illumination and
restore color distortion. However, these supervised methods
mainly utilize synthetic datasets for training, which may face
difficulties in handling varicolored haze in real scenes. To
our knowledge, we are the first to simultaneously consider
the intra-domain gap within varicolored haze spaces and the
inter-domain gap between synthetic and real images.

In this work, we formulate the challenging varicolored
real hazy removal task into two easier yet physical meaning
sub-problems and propose the physically disentangled joint
intra- and inter-domain adaptation (PDI2A) framework for
semi-supervised varicolored dehazing, as shown in Fig. 2.
Our model consists of three parts: two intra-domain adapta-
tions for color correction on both real and synthetic inputs,
and an inter-domain adaptation for cycle synthetic↔real
translation. Specifically, in intra-domain adaptation, we dis-
entangle haze image via scattering model and align color
in simpler scalar space, not directly in complex image
space. In inter-domain adaptation, disentanglement strategy
is also employed to ease translation difficulty. Both physical-
and learning-based reconstruction are designed to exchange
knowledge between synthetic&real data for semi-supervised
learning. Moreover, we apply self-consistency and adversar-
ial loss for better information preserving and translation. We
summarize the main contributions as follows:

• Our work focuses on a novel yet practical task: varicolored
image dehazing in real scenes. Compared with existing
methods which consider either intra-domain (varicolored
spaces) or inter-domain gap (synthetic and real spaces),
we are the first to joint consider both gaps simultaneously.

• We propose a semi-supervised joint intra- and inter-
domain adaptation framework, which divides the challeng-
ing varicolored real image dehazing into two easier yet
physical meaning subproblems: intra-domain color align-
ment and inter-domain synthetic-to-real haze removal,
significantly easing the learning procedure.

• We propose to resolve the color/hazy artifacts in the sim-
pler disentangled space, not the complex image space, in
which the consistent background is well preserved and
only the critical haze characteristics are transferred, sig-
nificantly easing the translation difficulty. Extensive ex-
periments on real and synthetic data demonstrate the supe-
riority of our method both quantitatively and qualitatively.

2. Related Work
2.1. Varicolored Haze Removal

Varicolored haze would lead to not only limited visibility
but also severe color distortion in real scenes. To eliminate
haze effects, numerous methods have been proposed to re-
move haze via efficient priors [11, 15, 16, 18, 43] or powerful
CNNs [7, 8, 13, 25, 32, 39, 40, 45]. However, most existing
methods mainly focus on improving visibility and neglect
the color distortion caused by varicolored haze.

Recently, color correction has been taken into considera-
tion for practical applications such as sandstorms and smog.
Most of these methods utilized white balance technique to
rectify the color distribution first, followed by visibility en-
hancement to generate haze-free images [1, 2, 19, 40]. Ren
et al. [40] derived color balanced input through gray world
assumption (GWA) [38] along with contrast-enhanced one
to generate haze-free image through gated fusion technique.
Dudhane et al. [14] proposed a cascaded network, including
the GWA-based haze color correction module and visibility
improvement module. Nevertheless, these methods heavily
rely on synthetic dataset and may face difficulties to general-
ize well in real scenes due to the huge gap between synthetic
and real data [42]. In this work, we solve varicolored real
haze removal through a semi-supervised paradigm.

2.2. Domain Adaptation

Domain adaptation aims at aligning the distribution shift
between source and target domains. As for image dehazing
tasks, several works have made use of domain adaptation
from feature- or pixel-level to solve the domain shift between
synthetic and real data [9, 27, 33, 42]. For example, Li et
al. [27] introduced a semi-supervised dehazing method, in
which a weight-shared network learned domain invariant
features for both synthetic and real data. Shao et al. [42] per-
formed pixel-wise image translation through CycleGAN [48]
to bridge the gap between synthetic and real domains, fol-
lowed by two restoration networks specially for synthetic
and real image dehazing. Although considerable progress
has been made for real haze removal, these methods mainly
consider aligning inter-domain gap between synthetic&real
data while neglecting intra-domain gap caused by color dis-
tortions. In this work, we jointly consider both intra- and
inter-domain gaps, in which intra-domain adaptation is per-
formed to rectify color distortion, hence easing difficulties
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Figure 2. Architecture of physically disentangled intra- and inter-domain adaptation framework for varicolored haze removal in real
scene. The whole framework is composed of two intra-domain adaptation modules for color correction and one inter-domain adaptation
module for synthetic↔real translations. Intra-domain adaptation firstly performs color correction to ease difficulties of translations between
synthetic&real domains. Moreover, instead of performing image-to-image translation directly, we physically disentangle the image according
to scattering model and only translate critical haze components while keeping identity background preserved, leading to accurate translation.

of latter inter-domain adaptation among synthetic&real data.

2.3. Image Translation

Recently, amounts of works have been proposed for im-
age translation. These methods usually translate images from
one domain to another with pixel- or feature-level alignment.
For example, Zhu et al. [48] proposed CycleGAN to per-
form bidirectional translation between two domains via both
adversarial and cycle consistency losses. Recently, to further
improve variance, disentangled representations have been
proposed for multi-modal image translation. MUINT [21]
and DRIT [22] decoupled image content and style so as to
multi-modal translation, in which content and style served as
latent spaces aligned only via adversarial loss. In this work,
we propose to endow disentanglement with explicit physical
meaning through scattering model and perform translation
exactly on critical haze components while keeping identity
background unchanged, thus easing translation difficulties.

3. Proposed Method
3.1. Framework Overview

Given a haze image I , varicolored image dehazing aims at
estimating latent image J . The key problem is the huge gaps
exist not only between synthetic training and real testing
data (inter-domain) but also among varicolored haze (intra-

domain). Existing methods either try to bridge intra- or inter-
domain gap, seldom works consider them simultaneously.

To bridge both gaps simultaneously, we propose to jointly
consider both intra- and inter-domain adaptation within a
unified physically disentangled image translation framework.
The core idea of the proposed method is to first get rid of
color distortion and then transfer knowledge between syn-
thetic&real domain. Specifically, as shown in Fig. 2, the
proposed PDI2A consists of two intra-domain adaptation
modules and one inter-domain adaptation module. Two
intra-domain adaptation take varicolored haze images ISyn,
IReal as input and perform varicolor→color-balanced trans-
lation to acquire ISynintra and IRealintra. And then inter-domain
adaptation performs not only cross-domain translation for
IS2Rinter and IR2S

inter but also self-reconstruction for ISyninter and
IRealinter. Moreover, we construct consistency between intra-
domain and inter-domain via self-consistency. Overall, such
a progressive multi-stage strategy would significantly ease
difficulties of multi-domain translations.

3.2. Physically Disentangled Translation

Intra-domain: atmospheric light oriented color correc-
tion. According to Eq. (1), haze images I can be decom-
posed into three components: clear background J , transmis-
sion t, and atmospheric light A. The first term represents
scene radiance, while the second and third terms denote the
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Figure 3. Analysis of the influence of different parameters in
atmosphere scattering model. Each row and column represents
different parameters of atmospheric light and scattering coefficient.
The scattering coefficient mainly controls the density of haze, while
atmospheric light is responsible for different color distortions.

effect of haze and corresponding color cast [14]. That is to
say, atmospheric light A determines color distortion degree.

To illustrate this, we visualize how the atmospheric light
A influences the color distortion. In Fig. 3, we synthesize
haze images with diverse atmosphere lights A and scatter-
ing coefficients β respectively. Along the horizontal axis,
we gradually change the atmospheric light A with different
values with other two components fixed. Along the verti-
cal axis, we gradually increase the scattering coefficient β
with other two components fixed. We can observe that the
scattering coefficient β mainly controls the density of haze
while atmosphere light A dominates the color cast. This ob-
servation motivates us to perform color correction, namely
the intra-domain translation only on atmospheric light space,
instead of directly on the haze images.

Consequently, our intra-domain adaptation module first
physically disentangle varicolored haze image into J , A, and
t via multi-head encoder (Eintra : I → {J,A, t}). Then, we
can easily align the color in atmosphere light space via clas-
sical AdaIN module [20] with estimated atmospheric light A
and the color-balanced one AC serving as source and target
style respectively, translating the varicolored A to the color-
balanced Aintra. Finally, Aintra is further combined to re-
construct color-balanced haze image Iintra through Eq. (1).
Note that standard AC is hard to preset in advance and fixed
one may lead to model collapse. Thus, we randomly select
one real color-free hazy image IC to generate diverse and
realistic atmospheric light each time. Compared with pre-
vious image translation methods, the proposed PDI2A per-
forms translation only on disentangled color-relevant compo-
nent while keeping background and transmission consistent,
greatly ensuring the color correction performance.
Inter-domain: background preserved cross-domain
translation. The inter-domain adaptation is to transfer the

labeled knowledge from the synthetic haze image to the un-
labelled real haze image. We further learn to disentangle
the color-balanced syn/haze images into three components
(Jinter, Ainter, tinter). The key insight of our inter-domain
adaptation is that clean background from synthetic and real
domains lie on the same distributions, while corresponding
haze images lie on different distributions. This motivates
us to take image background as domain-invariant content
space, while transmission and atmospheric light as domain-
specific attribute space. Then we could perform the cross-
domain translation by exchanging the attribute spaces of
synthetic and real images. Meanwhile, we could also re-
construct the identical haze image with the disentangled
components. Since transmission t is highly correlated with
background J , physical reconstruction (PR) via atmospheric
model is employed when transmission t and image J are
matched and data-driven learning generator is designed when
mismatched. Moreover, the reconstruction and adversarial
losses are jointly performed to ensure satisfying knowledge
preserving and translation. Finally, we build the disentangle
consistency between the intra- and inter-domain translation
to further facilitate the learning of disentanglement. In con-
trast to the existing image translation techniques [22, 48],
the proposed method embeds explicit physical meaning to
disentangle process, and keep the background J consistent
while translating only haze relevant components, leading to
better disentanglement and translation performance.

3.3. Loss Function

In this section, we give descriptions about loss functions
in PDI2A, which can be roughly divided into three classes:
adversarial loss, consistency loss, and disentangle loss.
Adversarial Loss. Firstly, to enforce color correction, we
employ a color discriminator DColor which attempts to dis-
tinguish translated haze image ISynintra and IRealintra from orig-
inal color balanced one IC . And network tries to fool dis-
criminator by generating more realistic color-balanced haze
images. Thus color adversarial loss can be formulated as:

LC
Adv = E

I
Syn
intra

[log(1−DC(I
Syn
intra))]+

EIReal
intra

[log(1−DC(I
Real
intra))] + αEIC [logDC(I

C)],
(2)

where α is the balance weight. Then, since we assume dis-
entangled clean background share the same distribution, we
adopt background discriminator DB to distinguish weather
haze exists in JSyninter and JRealinter:

LB
Adv = E

J
Syn
inter

[log(1−DB(J
Syn
inter))]+

EJReal
inter

[log(1−DB(J
Real
inter))] + αEJC [logDB(J

C)],
(3)

where JC is images from haze-free domain. Furthermore,
for generated synthetic and real haze images, we apply two
discriminators DS , DR to produce adversarial loss. For
example, the translated synthetic image IS2Rinter should share
the same distribution with the synthetic color balanced haze



images ĨReal . Thus the loss function can be formulated as:
LReal

Adv = EIS2R
inter

[log(1−DR(I
S2R
inter))]+

EĨReal [logDR(Ĩ
Real)].

(4)

Similar adversarial loss LSynAdv is also imposed to ensure the
synthetic haze image IR2S

inter generation.
Consistency Loss. Since the disentangle procedure may
unexpectedly degrade the information, we employ the con-
sistency loss both in the haze image domain and disentangled
components domain, serving as self-supervision of the disen-
tangle procedure. Firstly, in inter-domain adaptation module,
haze images are not only performed inter-domain translation
but also performed self-reconstruction from disentangled
components. We define reconstruction consistency loss as:

LRecons
Consis = ‖IReal

intra − IReal
inter‖1 + ‖ISyn

intra − I
Syn
inter‖1. (5)

Moreover, since disentangle and entangle are mutually in-
verse processes, the disentangled components in intra- and
inter-domain adaptation module should be consistent. Thus
we define the disentangle consistency loss as:
LDisen

Consis = ‖JReal
intra − JReal

inter‖1 + ‖JSyn
intra − J

Syn
inter‖1+

‖tReal
intra − tReal

inter‖1 + ‖tSyn
intra − t

Syn
inter‖1+

‖AReal
intra −AReal

inter‖1 + ‖ASyn
intra −A

Syn
inter‖1.

(6)

Disentangle Loss. In addition to adversarial losses and
consistency losses, for synthetic haze images which have
groundtruth for each disentangled component, we utilize L1
loss to supervise training of synthetic path:

LSyn
Sup = ‖JSyn

intra − J
Syn
GT ‖1+

‖tSyn
intra − J

Syn
GT ‖1 + ‖A

Syn −ASyn
GT ‖1.

(7)

Moreover, we also utilize efficient prior loss for real path
training such as dark channel to enforce disentanglement:

LReal
Prior = ‖ min

y∈N(x)
[ min
c∈r,g,b

(JReal
intra(y, c))]‖1, (8)

where x and y are pixel coordinates and c represents the
color channel of estimated background image JRealintra. N(x)
denotes the local neighborhood centered at x.
Overall Objective Function. The full objectivfe function
contains three losses as follow:
LTotal = λAdv(LC

Adv + LB
Adv + LReal

Adv + LSyn
Adv)+

λConsis(LRecons
Consis + LDisen

Consis) + λDisen(LSyn
Sup + LReal

Prior).
(9)

Through the full objective function, we alleviate the prob-
lem of lacking paired haze and haze-free images. In our
framework, both intra- and inter-domain adaptation are con-
strained by several supervised losses and consistency losses
to guarantee disentanglement and translation performance.

3.4. Implementation Details

The whole PDI2A framework is implemented on Pytorch
with a single RTX 3090 GPU. We utilize modified U-Net
as disentangle network Eintra and Einter in both intra- and
inter-domain adaptations. We utilized discriminator of Patch-
GAN as discriminator. As for balanced weights, we empiri-
cally set α, λAdv , λConsis, and λDisen as 2, 1, 1, and 10.

Table 1. Non-reference evaluations with various dehazing methods
on real dataset.

Methods NIQE↓ User Study↑
DCP [18] 6.71 3.18
ZID [24] 6.63 2.21
DA-Dehazing [42] 5.83 5.73
PSD [9] 5.94 5.12
MSBDN [12] 6.68 4.18
FFA-Net [36] 6.70 4.92
Ours 5.61 6.80

During training, we randomly crop both synthetic and real
images to 256×256 patches. Since directly training from
scratch for the whole network is difficult, in which paired
ground truth for real haze is unavailable, we firstly pretrain
Eintra and Einter simultaneously utilizing synthetic data
and the corresponding groundtruth for 90 epochs with initial
learning rate 1e-4 and Adam optimizer, which serves as a
good initialization to ease learning difficulty. The learning
rate decrease to zero linearly during pretraining. Then we
utilize both synthetic and real data for finetuning the whole
network with learning rate 1e-6 for 90 epochs, without learn-
ing rate decay. More details can be found in supplementary.

4. Experiments

4.1. Experiment Setting

Dataset. There are various datasets for image dehazing [3–
5,26,49], but few datasets specially designed for varicolored
haze removal. To solve this problem, we establish a large-
scale varicolored haze image dataset, which possesses both
large-scale synthetic and real-world varicolored haze images.
In this paper, we follow [14] and categorize the varicolored
haze image into three classes: grayish dense fog, orange
smog, and bluish fog. We select 6000 images from RESIDE
dataset [26] for haze simulation via Eq. 1. And for each
clean background, we generate all three colored haze images
with random scattering coefficients, so as to acquire 18000
varicolored haze images for training and 535 images for
testing. Moreover, for evaluation on real-world haze images,
we collect data from the Internet and existing datasets [10,
26] to acquire 1254 varicolored real-world haze images for
training and evaluation. Our code and dataset are publically
available at https://github.com/HuaYuuu/PDI2A-CVPR2022.

Experimental Settings. We compare PDI2A with (1) prior-
based dehazing methods DCP [18], NLD [11]; (2) unsuper-
vised ZID [24]; (3) CycleGAN [48]; (4) semi-supervised
Semi-Dehazing [27], DA-Dehazing [42], and PSD [9]; (5)
supervised MSBDN [12], FFA-Net [36]. For fair compar-
isons, we have finetuned all compare methods (if possible)
on our dataset with codes provide by the authors.

https://github.com/HuaYuuu/PDI2A-CVPR2022
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Figure 4. Visualization of dehazing results on real-world varicolored haze images.

4.2. Comparision on Real Data

We evaluate the performance of the proposed PDI2A
and other state-of-the-art methods on real varicolored haze
data. No-reference metrics such as NIQE and user study
are adopted for evaluation. Specifically, for the user study,
we randomly choose 50 real varicolored haze images and
the corresponding dehazing results produced by each com-
parison method. Then we invite 20 people to score each
result with the range of 1-10, higher score represents better
dehazing quality. The results are shown in Tab. 1. We can ob-
serve that our results outperform both supervised and other
semi-/unsupervised methods by a large margin. As for visual
comparison in Fig. 4, DCP [18], NLD [11], and ZID [24]
are continually suffer from color distortion due to unsuitable
priors for varicolored haze images. DA-Dehazing [42] and
PSD [9] can acquire dehazing images with higher contrast,
however, results may still encounter slight color distortion
and darken scene due to the intra-domain gap. Compared
with these methods, PDI2A possesses not only higher con-

trast but also more satisfying color correction results thanks
to the joint intra- and inter-domain adaptation paradigm.

4.3. Comparision on Synthetic Data

We further evaluate the performance of PDI2A and other
state-of-the-art semi-/unsupervised methods on synthetic
data. The dehazing results visualization are shown in Fig. 5.
From second and third columns, we can observe that conven-
tional prior-based methods suffered from severe color dis-
tortion and have darkened images, which is because conven-
tional priors [11,18] may not be suitable for varicolored haze.
The prior-based method ZID [24] also acquires same results.
Moreover, there is still some haze remaining in results pro-
duced by Semi-Dehazing [27] and DA-Dehazing [42]. Com-
pared with these methods, PDI2A can acquire images with
more favorable visual quality and details, closing to corre-
sponding groundtruth. Moreover, we also perform quanti-
tative comparison of dehaze results in Tab. 2. Our method
continues to acquire the highest PSNR/SSIM, demonstrating
the superiority of PDI2A for varicolored dehazing.
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Figure 5. Visualization of dehazing results on synthetic varicolored haze images.

Table 2. Quantitative comparison with various dehazing methods
on synthetic dataset.

Methods PSNR↑ SSIM↑
DCP [18] 15.52 0.8423
NLD [11] 16.32 0.8172
ZID [24] 13.89 0.5804
CycleGAN [48] 24.75 0.9220
Semi-Dehazing [27] 28.70 0.9638
DA-Dehazing [42] 27.88 0.9466
PSD [9] 28.49 0.9477
Ours 30.13 0.9670

4.4. Ablation Study

Effectiveness of intra- and inter-domain adaptation. We
investigate the influence of inter-domain adaptation and inter-
domain adaptation in Tab. 3. We can observe that both
modules serve important roles in quantitative performance.
The performance drops in the first two rows demonstrate
the benefits brought by intra- and inter-domain adaptation,
respectively. Furthermore, we also visualize dehazing result
without corresponding module in Fig. 6. We can observe that
without color correction in intra-domain adaptation module,
the dehazing result could obtain contrast improvement but
severe color distortion, which strongly demonstrates impor-
tance of intra-domain adaptation when dealing with varicol-
ored haze images. Moreover, without synthetic&real inter-
action in inter-domain adaptation module, results possess
more haze remaining in real scene due to gap between syn-

Table 3. The ablation study for components and losses in PDI2A.

Ablations PSNR SSIM
w/o intra-DA 29.20 0.9548
w/o inter-DA 29.07 0.9530
w/o LDisenConsis 28.47 0.9498
w/o LReconsConsis 29.94 0.9598
w/o Joint Training 27.95 0.9456
w/o Pretrain 24.95 0.9180
Ours 30.13 0.9670

thetic&real data, which further validate effectiveness of the
proposed joint intra- and inter-domain adaptation paradigm.

Effectiveness of consistency losses. We further evaluate
the influence of consistency losses, as shown in third and
fourth rows. The performance drop clearly demonstrates ben-
efits brought by consistency losses. Moreover, disentangle
consistency serves as a strong constraint to disentanglement
process, which plays an important role in quantitative results.

Effectiveness of training strategy. Then we evaluate the
influence of different training strategies in PDI2A, as shown
in the fifth and sixth row in Tab. 3. We can observe the
method encounter obvious performance drop without pre-
training, denoting the importance of pretraining on synthetic
data serving as a good initialization to ease network learn-
ing. Moreover, without end-to-end jointly training and learn-
ing, the performance has also decreased from 30.13/0.9670
(jointly) to 27.95/0.9456 (separately), showing the benefits
of joint intra- and inter-domain adaptation paradigm.
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Figure 6. Visualization of dehazing results w/o color correction
in intra-domain adaptation and w/o synthetic&real translation in
inter-domain adaptation.
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Figure 7. Visualization results of t-SNE on varicolored haze images
before and after the color correction in intra-domain adaptation.

4.5. Analysis

Analysis of color correction in feature-level. To study the
performance of color correction in inter-domain adaptation,
we visualize the t-SNE [44] result of varicolored haze fea-
tures before and after color correction, as shown in Fig. 7.
On one hand, the separation between varicolored haze im-
ages demonstrates significant gap among varicolored haze.
On the other hand, after color correction, the translated haze
images lie on more similar distribution, further demonstrat-
ing the importance of intra-domain adaptation.
Analysis of S2R translation. We also investigate the results
of synthetic-to-real translation, as shown in Fig. 8. We can
observe that the haze images generated from the proposed
method are relatively closer to real haze images after trans-
lation, revealing the effectiveness of the synthetic and real
translation in the inter-domain adaptation process.

4.6. Limitation

The proposed PDI2A mainly bridges the intra- and inter-
domain gap simultaneously through physical disentangle and
translation, in which atmospheric scattering model [29, 34]
plays an important role. However, nighttime haze is far more

(a) (b) (c) (d)

Figure 8. Translated results of synthetic varicolored haze images.
(a) Synthetic varicolored haze input, (b) synthetic color balanced
image from intra-DA, (c) S2R images, (d) reference real image.

Nighttime Haze Our Result

Figure 9. Analysis of the limitation of the proposed PDI2A. Left:
real-world nighttime haze images. Right: results produced by
PDI2A. Due to huge difference between daytime and nighttime
haze images, our method could remove most haze effects while
leaving the halo effect behind.

complicated than daytime haze due to the non-homogeneous
illumination and the halo effect. As shown in Fig. 9, we
visualize several real-world nighttime haze images and the
corresponding results of our PDI2A. We can observe that our
method removes most of the haze effects while leaving the
severe halo effects behind. Moreover, since the adopted scat-
tering model mainly focuses on no wavelength dependence
condition, the proposed PDI2A may face difficulties in wave-
length dependence situations such as smog or underwater
vision for now. A more comprehensive degradation model
would alleviate the problem and we would like to tackle
varicolored nighttime dehazing and wavelength dependence
dehazing in our future work.

5. Conclusion

In this work, we propose a novel joint intra- and inter-
domain adaptation paradigm for varicolored haze removal
task, which contains two intra-domain adaptation modules
for color correction and one inter-domain adaptation module
for synthetic↔real translation. For better translation, we
propose to employ a physically disentangle strategy by de-
composing the haze image into three components through
scattering model, so as to preserve the identity background
and ease translation difficulties with only color/haze relevant
layer. Extensive experiments on synthetic and real varicol-
ored haze data demonstrate the superiority of our method.
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