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A B S T R A C T

Improving denoising algorithms based on nonlocal self-similarity (NSS) to cope with increasing noise levels has
become difficult. This is primarily because of difficulty in accurately grouping similar image patches solely on
original spatial-domain of noisy images. To solve this problem, we propose to group similar patches on trans-
form-domain learned from clean natural images. In this paper, we introduce a denoising algorithm comprising
principal component dictionary (PCD)-based patch grouping and a low-rank approximation process. In the
proposed algorithm, PCD learns from clean natural images and uses the knowledge gained to guide similar
patches grouping results in noisy images. Patch grouping is directly implemented on PCD-based transform-
domain. And, external knowledge and internal NSS prior are used jointly for image denoising. The results of
experiments conducted indicate that the proposed denoising algorithm outperforms several state-of-the-art de-
noising algorithms, especially in heavy noise conditions.

1. Introduction

As rapid progress of digital imaging devices, image resolution in-
creases quickly. Higher resolution images are more easily contaminated
by noise. Therefore, there are increasing requirements of better de-
noising algorithms. Given a noisy image ∈ ×y n 1, image denoising can
be generally formulated by = +y x v, where ∈ ×x n 1 is the latent
clean image, ∈ ×v n 1 is the additive white Gaussian noise, and n is the
number of pixels in the image. As a classical problem in low-level vi-
sion, image denoising is an active topic [1–17]. Numerous denoising
algorithms have been developed to date. Existing techniques can be
roughly divided into two categories: conventional local prior-based
methods and nonlocal self-similarity (NSS)-based methods. Conven-
tional local prior-based methods include wavelet shrinkage based
methods [1–4], total variation based methods [5,6,12], and sparse re-
presentation based methods [7,8]. Because these methods only con-
centrate on local priors, their performances are limited.

Algorithms based on nonlocal self-similarity (NSS) prior, which uses
the recurrence of small patches in natural images, have achieved great
success [9,18–27]. Buades et al. [20] proposed the nonlocal means
(NLM), which was the first method to explicitly exploit NSS for image
denoising. NLM method estimated each pixel as the weighted average
of all pixels in image. Inspired by the success of NLM method, Dabov
et al. [21] proposed the “block matching” and 3D filtering (BM3D)
method. They used “block matching” to search for similar patches in the

image and grouped those patches into a 3D cube. The 3D filtering was
realized by using three steps: 3-D transformation of a group, shrinkage
of transform spectrum, and inverse 3-D transformation. BM3D algo-
rithm becomes an image denoising benchmark. Mairal et al. [18] pro-
posed the learned simultaneous sparse coding (LSSC) method by in-
corporating NSS and group sparse coding. They grouped similar patches
and jointly decomposed the groups on subsets of learned dictionary. To
improve the performance of sparse representation-based image re-
storation, Dong et al. [19] proposed the non-locally centralized sparse
representation (NCSR) to reduce the sparse coding noise for image
denoising. They exploited NSS to obtain good estimates of the sparse
coding coefficients of the original image. Gu et al. [23] presented
weighted nuclear norm minimization (WNNM) algorithm and applied it
to image denoising by exploiting NSS. They have also achieved state-of-
the-art image denoising performance. All of these algorithms adopted
“block matching” to group similar patches. However, the performance
of “block matching” decreases remarkably as noise levels increase.
Fig. 1 shows the results of an experiment conducted using the “block
matching”method, in which the red points are the centroids of the most
similar patches. As shown in the figure, the error-matching rate of si-
milar patches increases with the noise variance. The issue of how to
group similar patches correctly in noisy images is an open problem.

“Block matching” is implemented on the original spatial-domain of
noisy images. Because noise covers the evidence of similarity on the
original spatial-domain, the performance of this method is limited. To
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solve this problem, we propose to group similar patches on transform-
domain learned from clean natural images. On one hand, the original
spatial-domain of noisy images is redundant. We hope to obtain more
compact subspaces from transform-domain for more accurate image
structure expression, so that patch grouping results can be promoted.
On the other hand, structure information in noisy images has been
contaminated by noise. We hope to enhance patch grouping results by
using external clean image structure information. To achieve this goal,
we learn principal component dictionary (PCD) from clean natural
images, and use PCD to guide similar patches grouping. We introduce a
denoising algorithm that combines PCD-based patches grouping with a
low-rank approximation process. Fig. 2 presents a flowchart of the
proposed denoising algorithm. As shown in the figure, PCD learns from
clean natural images and constructs multiple subspaces. The eigen-
vectors in the sub-dictionaries of PCD represent the directions of co-
ordinate axes in multiple subspaces. Noisy patches are projected onto
multiple subspaces to estimate their principal components. Patches are
grouped on transform-domain by using the estimated principal com-
ponents as features. The PCD-based grouping scheme is robust to noise.
A low-rank approximation process is then applied to restore similar

patches groups. Because patch grouping uses external knowledge from
clean natural images and the low-rank approximation process exploits
internal NSS prior from noisy images, external knowledge and internal
NSS prior are simultaneously used in our proposed denoising algorithm.
Experimental results show that our proposed algorithm outperforms
many state-of-the-art denoising methods, especially in heavy noise
conditions.

Chen et al. [28] proposed an external patch prior guided internal
clustering algorithm. They learned Gaussian mixture models (GMMs)
from clean images and used them to guide the clustering of noisy pat-
ches, followed by a low-rank approximation process for image re-
storation. However, their proposed patch grouping method is not good
enough. GMM-based method cannot, in general, complete patches
grouping through clustering of the patches all at once. Following their
first clustering process, the number of patches in some classes was
found to be too large. They, therefore, used the K-means algorithm to
partition the larger classes, but the second clustering process imported
errors.

Pre-process for better grouping has been used in some other NSS-
based algorithms. BM3D algorithm adopted a two-stage denoising

Fig. 1. Patch-matching results of the “block matching”method. White boxes denote reference patches; red points label the location of searched similar patches. The error-matching rate of
similar patches increases with noise variance. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Flowchart of the proposed denoising algorithm based on PCD. In the learning stage, PCD learns from clean natural images. In the denoising stage, noisy patches are projected onto
the multiple subspaces constructed by PCD to estimate their principal components, which are then used as features to group similar patches. A low-rank approximation process is applied
to the patch clusters for denoising.
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strategy with basic estimate and final estimate [21]. Basic estimate was
used to improve the grouping by block-matching in the final estimate.
Zhang et al. [29] proposed an efficient image denoising scheme by
using principal component analysis (PCA) with local pixel grouping
(LPG). The LPG-PCA algorithm also had two stages and used an initial
estimation of noisy images to improve the LPG accuracy in the second
stage. Different from those algorithms, our algorithm directly groups
similar patches on transform-domain learned from clean natural
images. On one hand, patches are grouped with their estimated prin-
cipal components, which are robust to noise. On the other hand, ex-
ternal knowledge from clean natural images are used for better patch
grouping results.

The following contributions are made in this work. (1) We propose
to group similar patches on transform-domain learned from clean nat-
ural images, so as to enhance patch grouping results. (2) To promote
denoising performance, we propose a denoising method that integrates
external knowledge learning from clean natural images and internal
NSS prior from noisy images.

The remainder of this paper is organized as follows. Section 2 in-
troduces PCD and analyzes it. Section 3 describes the PCD-based patch
grouping method and integrates it into the proposed denoising algo-
rithm. Section 4 discusses and analyzes the experimental results ob-
tained. Finally, Section 5 presents concluding remarks.

2. Principal component dictionary (PCD)

2.1. Definition of PCD

PCD is defined based on principal component analysis (PCA), which
is used for tasks such as dimensionality reduction and feature extraction
[30]. The principal component subspaces of clean natural images can
be obtained by applying PCA to their patch clusters. PCD is defined as
the combination of these principal component subspaces.

Denote Φ as a parameter of a principal component subspace, with
the column vectors of Φ representing the directions of the principal
component subspace. Suppose a patch cluster in which the direct cur-
rent component has been removed is given. We denote the patch cluster
by an n-dimensional dataset x{ }i , where ⩽ ⩽i N1 . The covariance
matrix of the data set x{ }i can be calculated as

∑=
=

x x
N

Ω 1 .
i

N

i i
T

1 (1)

Because Ω is symmetrical, its singular value decomposition (SVD)
can be written as

= U UΩ Λ ,T (2)

where = …U ϕ ϕ ϕ[ , , , ]n1 2 is the orthonormal eigenvector matrix and
= …diag λ λ λΛ { , , , }n1 2 is the diagonal eigenvalue matrix with
⩾ ⩾ ⋯⩾λ λ λn1 2 . The principal components of x{ }i are eigenvectors

corresponding to the <m m n( ) top eigenvalues, which construct a
principal component subspace:

= …ϕ ϕ ϕΦ [ , , , ].m1 2 (3)

Suppose that we already have several patch clusters from natural
images; then, we can obtain K principal component subspaces. The
combination of these principal component subspaces can construct a
PCD model, which can be parameterized by ⩽ ⩽k KΦ{ },1k . Dong et al.
[31] learned PCA dictionary from clean patch clusters and used it to
code image patches. Our proposed PCD is different from that dictionary
as it does not contain the centroids of the training datasets.

2.2. Learning PCD from clean natural images

Hinton et al. [32] have introduced a hard version and a soft version
algorithm to learn the mixtures of PCA. Here, we applied it to learn the
PCD from clean natural images. A cluster can be treated as a group of
patches that belong to the same principal component subspace. The
projection cost is at a minimum when a patch is projected onto the
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Fig. 3. Twenty sub-dictionaries of PCD. Each sub-dictionary has eight principal compo-
nent vectors.

Fig. 4. Curves of percentage of correctly matched patches with two different PCD models,
learning by the hard assignment method and the soft assignment method. Black broken
lines denote the results of the soft method, and red full lines denote the results of the hard
method. Square, rhombus, and pentacle denote patch matching results for textural, struc-
tural, and smooth, respectively. It is clear that the hard assignment method behaves nearly
as same as the soft assignment method. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Curves of percentage of correctly matched patches with different methods. Full
lines denote the results of the PCD-based method, and broken lines denote the results of
the “block matching” method. Red square, blue rhombus, and green pentacle denote patch
matching results for textural, structural, and smooth, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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principal component subspace corresponding to the cluster to which the
patch is assigned. We assumed that all patches are independently
sampled.

For the hard version, an objective function can be proposed as the
total projection cost of the patches:

∑ ∑= −
= =

J x xγ Φ Φ‖ ( )‖ ,
i

N

k

K

ik i k k
T

i
1 1

2

(4)

where ∈γ {0,1}ik describes the cluster to which the image patch xi is
assigned, such that if data point xi is assigned to cluster k, then =γ 1ik ,
and =γ 0ij for ≠j k. x{ }i denotes the patches from natural images. The
parameter of the principal component subspace corresponding to
cluster k is defined as matrix .

The values for ̂γik and ̂Φk are calculated to minimize the total pro-
jection cost as the following function:

̂ ̂ = Jγ Φ( , ) argmin .ik k
γ Φ,ik k (5)

The EM algorithm is an iterative procedure in which each iteration
involves two successive steps corresponding to successive optimizations
with respect to γik and . Some patches are randomly assigned into K
clusters and get the initial values for . In the first phase J is minimized
with respect to γik, while keeping fixed. In the second phase J is mini-
mized with respect to , while keeping γik fixed. This two-stage optimi-
zation is repeated until convergence occurs. These two stages of up-
dating γik and updating , correspond respectively to the E (expectation)
and M (maximization) steps of the EM algorithm (hereafter, we use the

result of
“block matching”

result of 
PCD-based

matching results on clean image 50n 75n

Fig. 6. Results of patch grouping for the “block
matching” method and our PCD-based method.
White boxes denote reference patches; red points
denote the location of searched similar patches.
Our method is clearly more stable than the block
matching method for both =σ 50n and =σ 75n .
(For interpretation of the references to color in
this figure legend, the reader is referred to the
web version of this article.)

Fig. 7. Influence of changing K on the denoising results of PSNR under different noise levels, with σn =(30, 40, 50, 60, 75, 100).
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terms E-step and M-step).
In the E-step, the terms involving different i are independent; thus,

we can optimize for each i separately by choosing γik to be one for
whichever value of k gives the minimum value of −x xΦ Φ‖ ( )‖i k k

T
i

2. This
can be expressed as

= ⎧
⎨
⎩

= −x x
γ

k Φ Φ1 if argmin ‖ ( )‖,

0 otherwise.
ik j

i j j
T

i

(6)

In the M-step, we consider the optimization of with γik held fixed.
We can minimize J by implementing PCA on the patches assigned to
cluster k to update .

For the soft version, in the E-step, the responsibility of sub-model k

Table 1
PSNR (dB) results of different denoising algorithms on 16 commonly used images.

σn =30 σn =40

BM3D EPLL NCSR EPIC WNNM PCDPG BM3D EPLL NCSR EPIC WNNM PCDPG

Baboon 24.59 24.88 24.74 24.79 24.84 24.90 23.34 23.64 23.54 23.53 23.63 23.70
Barbara 26.95 25.02 26.79 26.94 27.40 27.34 25.07 23.73 25.22 25.32 25.91 25.84
Boat 26.40 26.43 26.27 26.69 26.60 26.65 25.06 25.26 24.86 25.41 25.32 25.39
Cameraman 29.69 29.41 29.59 29.89 29.84 29.87 28.09 27.96 28.09 28.51 28.42 28.46
Couple 26.31 26.29 26.05 26.44 26.39 26.44 24.94 25.00 24.63 25.02 25.05 25.12
Fingerprint 23.79 23.36 23.92 23.69 24.03 24.06 22.04 22.07 22.48 22.46 22.77 22.82
Fligt 28.21 28.39 28.26 28.64 28.60 28.62 26.71 27.06 26.66 27.22 27.19 27.22
Flinstones 24.08 24.30 24.29 24.71 24.68 24.67 22.11 22.66 22.25 23.09 23.02 23.01
Hill 26.84 26.87 26.77 26.99 27.03 27.06 25.88 25.81 25.63 25.88 25.95 25.99
House 32.31 31.49 32.42 32.55 32.76 32.81 30.89 30.09 31.13 31.17 31.47 31.52
Lena 29.44 29.17 29.36 29.69 29.73 29.79 27.77 27.79 28.01 28.27 28.26 28.34
Man 27.49 27.62 27.46 27.67 27.67 27.70 26.17 26.32 26.09 26.44 26.39 26.43
Monarch 28.43 28.39 28.47 28.83 28.91 28.97 26.71 26.90 26.85 27.43 27.47 27.54
Peppers 29.16 29.22 29.10 29.56 29.49 29.53 27.85 27.85 27.68 28.18 28.05 28.11
Straw 24.97 24.84 25.13 25.23 25.47 25.51 23.15 23.28 23.64 23.74 23.94 24.01
Walkbridge 25.12 25.39 25.22 25.34 25.32 25.37 24.02 24.21 23.96 24.19 24.18 24.24

Avg. 27.11 26.94 27.11 27.35 27.42 27.45 25.61 25.60 25.67 25.99 26.06 26.11

σn =50 σn =60

BM3D EPLL NCSR EPIC WNNM PCDPG BM3D EPLL NCSR EPIC WNNM PCDPG

Baboon 22.65 22.72 22.80 22.80 22.88 22.92 22.21 22.19 22.23 22.25 22.31 22.36
Barbara 24.37 22.85 24.06 24.25 24.86 24.85 23.42 22.23 23.06 23.25 23.97 23.96
Boat 24.19 24.38 23.95 24.45 24.36 24.42 23.48 23.65 23.20 23.65 23.64 23.72
Cameraman 27.08 26.91 27.01 27.42 27.31 27.32 26.00 26.06 26.06 26.58 26.43 26.47
Couple 23.88 23.94 23.73 24.08 24.07 24.15 23.22 23.24 23.02 23.33 23.34 23.43
Fingerprint 21.79 21.01 21.56 21.62 21.92 21.96 21.28 20.14 20.82 20.92 21.25 21.31
Fligt 25.79 25.90 25.59 26.17 26.09 26.13 24.98 25.16 24.82 25.33 25.28 25.32
Flinstones 20.77 21.51 21.06 21.71 21.49 21.50 19.80 20.46 20.10 20.75 20.52 20.51
Hill 25.00 25.10 24.85 25.07 25.14 25.18 24.43 24.36 24.20 24.39 24.49 24.55
House 29.83 28.94 29.90 30.06 30.45 30.53 29.06 27.73 28.77 29.04 29.53 29.60
Lena 26.93 26.65 26.95 27.19 27.28 27.35 26.17 25.91 26.07 26.29 26.45 26.51
Man 25.24 25.48 25.19 25.51 25.48 25.51 24.54 24.69 24.43 24.79 24.73 24.80
Monarch 25.72 25.71 25.76 26.25 26.31 26.41 24.84 24.91 24.85 25.40 25.45 25.55
Peppers 26.63 26.74 26.52 27.03 26.91 27.01 25.71 25.69 25.54 26.15 26.06 26.18
Straw 22.38 22.02 22.49 22.74 22.94 23.00 21.72 21.08 21.62 21.90 22.05 22.13
Walkbridge 23.15 23.38 23.18 23.42 23.40 23.45 22.54 22.72 22.58 22.82 22.81 22.86

Avg. 24.71 24.58 24.66 24.99 25.06 25.11 23.96 23.76 23.84 24.18 24.27 24.33

σn =75 σn =100

BM3D EPLL NCSR EPIC WNNM PCDPG BM3D EPLL NCSR EPIC WNNM PCDPG

Baboon 21.69 21.73 21.63 21.67 21.79 21.83 21.08 21.02 20.99 21.08 21.12 21.20
Barbara 22.41 21.69 22.02 22.24 22.96 23.02 21.30 20.71 20.81 21.09 21.55 21.66
Boat 22.61 22.73 22.41 22.82 22.87 22.95 21.65 21.83 21.48 21.83 21.88 21.95
Cameraman 25.02 25.02 24.94 25.51 25.29 25.36 23.75 23.54 23.55 24.13 23.99 24.02
Couple 22.41 22.51 22.25 22.57 22.58 22.65 21.60 21.46 21.34 21.64 21.69 21.74
Fingerprint 20.50 18.95 19.99 20.13 20.51 20.58 19.60 17.35 18.96 19.02 19.54 19.63
Fligt 23.88 24.01 23.87 24.28 24.30 24.37 22.80 22.54 22.65 23.09 23.17 23.25
Flinstones 18.71 19.29 18.90 19.48 19.24 19.24 17.47 17.86 17.56 18.13 17.91 17.91
Hill 23.71 23.59 23.46 23.67 23.76 23.84 22.78 22.65 22.48 22.80 22.79 22.95
House 27.57 26.81 27.47 27.88 28.28 28.38 26.04 25.08 25.75 26.23 26.73 26.76
Lena 25.12 24.70 25.02 25.33 25.53 25.56 23.91 23.44 23.64 24.09 24.35 24.37
Man 23.71 23.82 23.57 23.90 23.88 23.95 22.83 22.59 22.50 22.93 22.82 22.91
Monarch 23.79 23.82 23.67 24.27 24.31 24.41 22.43 22.12 22.11 22.93 22.95 23.03
Peppers 24.72 24.61 24.36 25.07 24.93 25.10 23.28 23.03 22.84 23.70 23.46 23.68
Straw 20.68 20.06 20.62 20.97 21.21 21.26 19.50 18.89 19.41 19.81 19.88 20.03
Walkbridge 22.07 22.03 21.86 22.13 22.13 22.18 21.08 21.13 20.97 21.26 21.27 21.33
Avg. 23.04 22.84 22.88 23.25 23.35 23.42 21.94 21.58 21.69 22.02 22.19 22.28
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for data point xi is calculated as

∑=
⎛

⎝
⎜

⎞

⎠
⎟

− −q e eE E
k
i σ

j

σ/2 /2k
i j

i2 2

(7)

where Ek is the squared reconstruction error and σ2 acts like a tem-
perature parameter. In M-step, the examples are weighted for the PCA
by the responsibilities. Convergence is assessed by examining the
change in the overall log-likelihood

∑ ∑ ∑ ∑− −
= = = =σ

q E q q1
2

log
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k

K
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k
i

i

N

k

K

k
i

k
i

2
1 1 1 1 (8)

In the next subsection, we conducted an patch matching experiment
to compare the results of the hard version and the soft version learning
method. We also implemented an patch matching experiment to com-
pare the PCD-based method and the “block matching”.

2.3. Analysis of PCD

We learned PCD from patches randomly sampled from the Berkeley
Segmentation Database (BSD) [33] training images (millions of pat-
ches) through both the hard assignment and the soft assignment
method. The direct current components of all patches were removed in
order to make the mean of the patches zero. Fig. 3 shows the sub-

dictionaries of the learned PCD, where the number of sub-dictionaries is
twenty and each subspace is constructed by eight principal component
vectors. As shown, each principal component sub-dictionary in PCD
captures one type of contrast variation of natural images.

First, we compared the patch clustering results of the hard version
and the soft version learning method. Then, we compared the perfor-
mance of patch grouping based on PCD with the “block matching”
method used in BM3D [21]. The patches used in the experiment were
extracted from five test images (House, Cameraman, Lena, Peppers, and
Monarch), which were divided into three classes in terms of variance:
smooth patches ( <v 0.002p ), structural patches ( < <v0.002 0.02p ), and
textural patches ( < v0.02 p). Principal component sub-dictionary was
then selected for each patch. The selected principal component sub-
dictionary was used to estimate the principal components of patches.
The patch grouping method based on PCD used the estimated principal
components as features. We randomly selected several reference pat-
ches and searched for similar patches with the PCD-based method and
the “block matching”method used in BM3D. In Figs. 4 and 5, horizontal
coordinate denotes the values of standard deviation of added Gaussian
noise with = (15, 25, 35, 45, 55, 65, 75, 100), and the vertical co-
ordinate represents the averaged correct rate under a specific noise
level. As can be seen in Fig. 4, the hard assignment method behaves
nearly as same as the soft assignment method. As can be seen in Fig. 5,
the correct matching rates of the proposed PCD-based method are ob-
viously higher than the matching rates of the “block matching”method.

(h) PCD-NSS(g) WNNM

(c) BM3D (d) EPLL

(e) NCSR (f) EPIC

(a) Ground Truth (b) Noisy Image

Fig. 8. Denoising results on image House by different methods (noise level σn =75). (a) Ground truth. (b) Noisy image. (c) BM3D, PSNR=27.57 dB. (d) EPLL, PSNR=26.81 dB. (e)
NCSR, PSNR=27.47 dB. (f) EPIC, PSNR=27.88 dB. (g) WNNM, PSNR=28.28 dB. (h) PCDPG, PSNR=28.38 dB. The figure is better viewed in zoomed portable document format
(PDF).
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This advantage provides benefits for the denoising algorithm based on
NSS.

3. PCD based patch grouping for image denoising

In this section, we give the details of PCD-based patch grouping for
image denoising. The learned PCD is used to guide patch grouping, and
a low-rank approximation process is applied to the patch clusters.

3.1. PCD guided patch grouping

Given a noisy image, the nonlocal similar patches are searched in a
local window for each reference patch. The principal component sub-
space is first selected for each reference patch. Then, noisy patches and
their neighboring patches are projected onto the corresponding prin-
cipal component subspace for similar patch searching. The patch
grouping method based on PCD includes a principal component sub-
space selection step and a similar patch search step.

Principal component subspace selection. A principal component
subspace from PCD is selected for every reference patch. The projection
cost is minimized when the patch is projected onto its most appropriate
principal component subspace. Suppose that the learned PCD has K
principal component subspaces, parameterized by matrices . We in-
troduce model label ⩽ ⩽g i N{ },1i to denote the principal component
subspace selected for patch yi, and ∈ …g K{1,2, , }i . The value for gi is
calculated by minimizing the following function:

∑= −
=

g y yΦ Φargmin ‖ ( )‖ .i k i

N

i k k
T

i
1

2
2

(9)

Similar patch search. In this step, we project yi and the neigh-
boring patches in local window ⩽ ⩽y j M{ },1j , onto the selected prin-
cipal component subspace to search similar patches. The projection of
the patch yi is defined by

=l yΦ .i g
T

ii (10)

The estimated principal components can be calculated as lΦg ii . We use
the estimated principal components as the features for similar patch
searching. The distance between patch yi and yj can be expressed as
follows:

= − = −d l l l lΦ Φ‖ ‖ ‖ ‖ij g i g j i j2
2

2
2

i i (11)

As shown in the equation, the distance between two patches can be
transformed into the distance between two points on the PCD-based
transform-domain. Therefore, we directly search for similar patches on
the PCD-based transform-domain.

Fig. 6 compares the results of patch grouping by the “block
matching” method to that of our PCD-based method. The white boxes
denote the reference patches, whereas the red points denote the loca-
tion of the searched similar patches. It is clear that our method is more
stable than the “block matching” method for both =σ 50n and =σ 75n .

3.2. Low-rank approximation process

Low-rank approximation is achieved by stacking the patch yi and its
similar patches into a matrix, denoted by ∈ × +Y i

n S( 1),

= …Y y y y y[ , , , ],i i i i iS1 2 (12)

where S is the number of similar patches selected for the patch yi in i-th

(h) PCDPG(g) WNNM

(c) BM3D (d) EPLL

(e) NCSR (f) EPIC

(a) Ground Truth (b) Noisy Image

Fig. 9. Denoising results on image Peppers by different methods (noise level σn =100). (a) Ground truth. (b) Noisy image. (c) BM3D, PSNR=23.28 dB. (d) EPLL, PSNR=23.03 dB. (e)
NCSR, PSNR=22.84 dB. (f) EPIC, PSNR=23.70 dB. (g) WNNM, PSNR=23.46 dB. (h) PCDPG, PSNR=23.68 dB. The figure is better viewed in zoomed PDF.
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patch group. We can assume the matrix of the vectorized patches from a
patch group is of low rank and model the matrix as follows:

= +Y Z V ,i i i (13)

where Zi is the corresponding low-rank matrix and V i denotes the
Gaussian noise matrix. Then, an energy function can be proposed to
estimate Zi [23]:

 = − + ∗Z
σ

Y Z Zargmin 1 ‖ ‖ ‖ ‖ ,ωi
Z n

i i F i2
2

,
i (14)

where σn
2 is the noise variance. Denote the j-th singular value of Zi by

β Z( )j i and let U VΣ T be the SVD of Y i. The optimal solution to this
problem is given by Ref. [23]:

̂ = − +αZ U τdiag VΣ( ( ) ) ,i
T (15)

where = … … = +α α α α α α[ , , , , , ],j n j β Z ε1 2
1

( ( ) )j i
, and ∗ = ∗+( ) max( ,0).

The value of each pixel within the reconstructed image is calculated
by averaging the values of pixels contained by the overlapped

recovered patches.

3.3. The proposed denoising algorithm

The PCD-based patch grouping method and the low-rank approx-
imation process are combined to form our proposed denoising algo-
rithm. To enhance the output of this denoising algorithm, we iterate
these procedures. Given a noisy image y, we start with some initial
guess x0. The standard deviation of noise in iteration t is estimated by

= × − −+σ η σ y x‖ ‖ .t
n

t1 2
2
2 (16)

The process iterates until convergence occurs. Algorithm 1 outlines
the complete optimization process.

Algorithm 1. PCD-based patch grouping for image denoising

1: Input: Noisy image y, noise standard deviation σn, a reasonable
scaling factor η, learned PCD model Φ{ }k .
2: Output: Denoised image x IterNum.
3: Initialization: = = =x y y y σ σ, , n

0 0 0 .
4: for =t IterNum1: do
5: Iteration regularization:

= + − = × − −− − −y x δ y y σ η σ y x( ); ‖ ‖t t t t
n

t1 1 2 1
2
2 ;

6: for each reference patch yi
t do

7: Select principal component subspace for each reference
patch;

8: Search for similar patches;
9: Construct low-rank matrices Y i

t ;

(h) PCDPG(g) WNNM

(c) BM3D (d) EPLL

(e) NCSR (f) EPIC

(a) Ground Truth (b) Noisy Image

Fig. 10. Denoising results on image Straw by different methods (noise level σn =100). (a) Ground truth. (b) Noisy image. (c) BM3D, PSNR=19.50 dB. (d) EPLL, PSNR=18.89 dB. (e)
NCSR, PSNR=19.41 dB. (f) EPIC, PSNR=19.81 dB. (g) WNNM, PSNR=19.88 dB. (h) PCDPG, PSNR=20.03 dB. The figure is better viewed in zoomed PDF.

Table 2
Average denoising results (PSNR (dB)) by different denoising methods on 40 randomly
selected images from the BSD test dataset.

σn BM3D NCSR EPLL EPIC WNNM PCDPG

10 33.49 33.64 33.48 33.75 33.73 33.79
30 28.01 28.08 28.05 28.23 28.24 28.31
50 25.92 25.95 25.92 26.16 26.16 26.24
75 24.54 24.43 24.38 24.68 24.71 24.80
100 23.10 23.43 23.38 23.73 23.72 23.82
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10: Compute the latent matrix Zi
t from Y i

t via Eq. (13);
11: end for
12: Average the overlapped recovered patches to reconstruct the

estimated images xt ;
13: end for

4. Experimental evaluation

In the ensuing experiments, our algorithm is called PCD-based patch
grouping (PCDPG) for image denoising. We compared our algorithm
with state-of-the-art modern image denoising techniques, including
BM3D [21], NCSR [19], expected patch log likelihood (EPLL) [34],
external prior-guided internal clustering (EPIC) [28], and weighted
nuclear norm minimization (WNNM) [23]. The codes of these algo-
rithms were obtained from the websites of the authors and the default
parameter settings were used.

In the model learning stage, there are 3 parameters: p K m, , . The
patch size ( ×p p) was set as p=(6, 7, 8, 9), the number K( ) of

principal component subspaces as K=(5, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100), the number (m) of principal components as =m p. We ex-
tracted about 10 million patches from about 200 training images in the
BSD to learn the PCD model. In the denoising stage, the parameter
values of p were set as p=6 for < ⩽σ p0 20,n =7 for

< ⩽σ p20 40,n =8 for < ⩽σ40 60n , and p=9 for < ⩽σ60 100n . The
parameter values of η were set as η =0.54 for < ⩽σ η0 20,n =0.56 for

< ⩽σ η20 40,n =0.58 for < ⩽σ40 100n . The other parameter settings
were the same as WNNM.

4.1. Denoising on commonly used images

We validated the performance of the proposed denoising algorithm
on 16 commonly used images. White Gaussian noise with zero mean
and standard deviation σn =(30, 40, 50, 60, 75, 100) was added to the
clean images to evaluate the performances.

We analyze the suitable value of parameter K for each noise level σn.
In Fig. 7, the vertical coordinate of each subfigure denotes the averaged
value of peak signal-to-noise ratio (PSNR) at a certain noise level, and
the horizontal coordinate denotes the value of parameter K. As can be

(a) Ground Truth (b) Noisy Image (c) BM3D (d) EPLL

(e) NCSR (f) EPIC (g) WNNM (h) PCDPG

Fig. 11. Denoising results on image from BSD dataset by different methods (noise level σn =50). (a) Ground truth. (b) Noisy image. (c) BM3D, PSNR=26.70 dB. (d) EPLL,
PSNR=26.84 dB. (e) NCSR, PSNR=26.61 dB. (f) EPIC, PSNR=27.03 dB. (g) WNNM, PSNR=26.90 dB. (h) PCDPG, PSNR=27.00 dB. The figure is better viewed in zoomed PDF.
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seen, the best value of parameter K can be set as 10. Even through the
best value of parameter K are separately 5 and 30, when σn is set to be
50 and 100. The PSNR results only change in a slight range with dif-
ferent values of K. Table 1 reports the PSNR performance of seven
competing algorithms. It is clear from Table 1 that our proposed algo-
rithm achieved the highest PSNR in almost all cases. The PSNR per-
formance of our proposed algorithm is an improvement over WNNM
from 0.03 dB to 0.06 dB to 0.09 dB on average, when the noise devia-
tion increases from 30 to 60 to 100. Our algorithm outperformed all the
other methods. The improvement became more significant with

increasing noise level.
The visual quality of denoised images is critical when evaluating a

denoising algorithm. Figs. 8–10 show the denoised images of House,
Peppers, and Straw by the respective competing algorithms. It is clear
that EPLL and EPIC do not handle smooth areas well; further, WNNM is
likely to generate artifacts when noise is strong and BM3D and NCSR
slightly over-smooth the image. Our proposed denoising method is
more robust than those other methods and better preserves structures.
For example, for House, our algorithm produces a much clearer edge
with fewer artifacts. For Peppers, our algorithm recovers the interspaces
between peppers and the textures on peppers clearer than all the
completing methods, including WNNM. For Straw, the structures of the
straws are reconstructed more faithfully by our algorithm.

4.2. Denoising the BSD test dataset

We validated the performance of our proposed denoising algorithm
on 40 images randomly selecting from the BSD test dataset. The value
of K was set to 10, same as in the above experiment. Table 2 shows the
PSNR performance for the competing denoising methods. It is clear that

(a) Ground Truth (b) Noisy Image (c) BM3D (d) EPLL

(e) NCSR (f) EPIC (g) WNNM (h) PCDPG

Fig. 12. Denoising results on image from BSD dataset by different methods (noise level σn =75). (a) Ground truth. (b) Noisy image. (c) BM3D, PSNR=25.12 dB. (d) EPLL,
PSNR=24.30 dB. (e) NCSR, PSNR=24.90 dB. (f) EPIC, PSNR=25.13 dB. (g) WNNM, PSNR=25.64 dB. (h) PCDPG, PSNR=25.76 dB. The figure is better viewed in zoomed PDF.

Table 3
Average denoising results (PSNR (dB)) by CBM3D and our algorithm on 68 randomly
selected color images from the BSD under several noise levels.

σn 10 20 30 40

CBM3D 35.82 31.78 29.57 27.90
PCDPG 35.88 32.00 29.84 28.45
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our algorithm performed best on all the cases of eight noise levels
(σn =10, 20, 30, 40, 50, 60, 75, 100). Our algorithm is better than
WNNM from 0.06 dB to 0.1 dB on average, when the noise deviation
increases from 10 to 100. Figs. 11 and 12 show examples from BSD test
dataset. In Fig. 11, our algorithm recovers the structures of hand and
skirt more faithfully than the other algorithms. In Fig. 12, the textures
of the boat and the buildings are restored better with our algorithm
than with the others.

We also compared our proposed algorithm with the color block-
matching and 3D filtering (CBM3D) method [35] on color images from
BSD test dataset. When our algorithm was applied to color images, the
intensity data from 3 channels at a local patch was processed as a
vector. The parameter value of η was set as η =0.65. Table 3 shows the
performance for CBM3D and our algorithm on color images under
several noise levels. Our algorithm is better than CBM3D from 0.06 dB
to 0.55 dB on average, when the noise deviation increases from 10 to
40. Figs. 13 and 14 show examples of color images from the BSD test
dataset. In Fig. 13, the proposed denoising algorithm recovers the
flowers more clearly than CBM3D. In Fig. 14, the textures on the jeans
are restored better with our algorithm. In summary, our proposed al-
gorithm outperformed the other methods both qualitatively and quan-
titatively. The stability of our proposed similar patches grouping
method enhances the performance of the denoising algorithm, espe-
cially with heavy noise.

5. Conclusion

In this paper, we proposed PCD-based patch grouping for image
denoising. We learned PCD from clean natural images and used it to
guide similar patch grouping. In the proposed patch grouping scheme,
noisy patches are projected onto PCD-based transform-domain to esti-
mated their principal components, and grouped with their estimated
principal components, which are robust to noise. Therefore, the PCD-
based scheme enhances the patch grouping results, especially with
heavy noise. The proposed patches grouping scheme enhances

denoising performance. We combined the PCD-based patch grouping
method and a row-rank approximation process in a proposed denoising
algorithm. External knowledge from clean natural images and internal
NSS prior are used jointly in the proposed algorithm. Experimental
results indicate that our denoising method outperforms many state-of-
the-art algorithms, both qualitatively and quantitatively. The proposed
patches grouping scheme also can be applied to other image restoration
tasks, such as deblurring, supper-resolution and so on.
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