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Hyperspectral Image Restoration: Where Does the
Low-Rank Property Exist

Yi Chang, Member, IEEE, Luxin Yan, Member, IEEE, Bingling Chen, Sheng Zhong,
and Yonghong Tian, Member, IEEE

Abstract—Hyperspectral images (HSIs) restoration is to re-
cover the clean image from degraded version, such as the noisy,
blurred or damaged. Recent low-rank tensor-based recovery
methods have been widely explored in HSIs restoration. Most of
previous methods, however, neglect an inconspicuous but impor-
tant phenomenon that the physical meaning and dimension along
the spatial, spectral and non-local mode are markedly different.
In this work, we discover the low-rank property discrepancy
along spatial, spectral and non-local self-similarity mode in the
HSIs, and argue that the intrinsic low-rank correlations along
each mode contribute different to the final restoration results.
Consequently, we figure out that the combination of the spectral
and non-local induced low-rank is most beneficial for HSIs
modeling, and propose an optimal low-rank tensor model (OLRT)
for HSIs restoration. Further, we not only explore the low-
rank property in the image component, but also in the sparse
error component (stripe noise in HSIs). Thus, we extend OLRT
to the OLRT-RPCA with low-rank tensor priors for both the
HSIs and sparse error. Besides, previous methods are usually
designed for one specific HSIs task, which is less robust to various
tasks. We prove that the proposed optimal low-rank prior is
very flexible for various HSIs restoration problems including
denoising, deblurring, inpainting and destriping. The proposed
methods have been extensively evaluated on several benchmarks
and tasks, and greatly outperform state-of-the-arts. We show the
simple yet effective OLRT strategy is also beneficial to STOA.

Index Terms—Hyperspectral images, image restoration, low-
rank tensor recovery.

I. INTRODUCTION

AN HSI could provide abundant information with multiple
specific frequencies across the electromagnetic spectrum,

which facilitates the fine-grained representation of a natural
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scene. Unfortunately, during the imaging procedure, the HSI
is usually contaminated by the noises, blurs, and damages,
making the HSI unsuitable for subsequent applications. Math-
ematically, the problem can be generally formulated by a linear
degradation model as follow:

Y “ T pX q ` E `N , (1)
where Y P RRˆCˆB is an observed HSI, X P RRˆCˆB
represents the desired clean HSI, E P RRˆCˆB denotes the
sparse error (for example stripe noise in HSIs), N P RRˆCˆB
means the additive random noise, and T p‚q stands for the
linear degradation operator. With different settings, Eq. (1) can
represent different HSIs restoration problems; When T p‚q is
an identity tensor, the problem (1) becomes HSIs denoising
(only consider N ) or HSIs destriping (only consider E), or
HSIs mixed noise removal (both N and E); when T p‚q is a
blur operator, the problem (1) turns into the HSIs deblurring;
For HSIs inpainting, T p‚q is a binary mask tensor, 0 for
missing pixels and 1 for fine pixels.

The task is to estimate clean HSIs X and sparse error E
from the given degradation Y . This ill-posed nature implies
that additional constraints on X and E have to be enforced.
Thus the key is to find appropriate prior of HSIs. Various
regularizations have been proposed for HSIs restoration, such
as image processing-based filtering methods [1], model-based
optimization methods [2]–[45], and deep learning-based con-
volutional neural network [46]–[51]. The model-based opti-
mization methods can further be classified into 1-D vector-
based sparse representation methods [2]–[11], 2-D matrix-
based low-rank matrix recovery methods [12]–[22], and 3-D
low-rank tensor approximation methods [23]–[45].

In recent years, the low-rank tensor HSIs restoration meth-
ods have received significant attention. The tensor-based meth-
ods could naturally utilize both the spatial-spectral informa-
tion, and at the same time well preserve the high-dimension
spatial-spectral structural correlation in 3D HSIs. Interested
readers could refer to [52] for more details about the tensor
decomposition. The core idea of the tensor-based restoration
method is to transform the HSIs via low-rank decomposition,
and perform the shrinkage in the transformed domain so as to
satisfactorily decouple the noises from the image structure.

For example, in [23], Xie et al. proposed a multispectral
image denoising method by taking both fine-grained tensor
sparsity insights of Tucker (sum of the ranks along each
mode of a 3-order tensor) and CP low-rank decompositions
into consideration. Ji et al. [32] proposed a nonlocal-based
4-order tensor low-rank decomposition method for remotely
sensed images inpainting. On the contrary, Peng et al. [26]
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proposed a decomposable nonlocal tensor dictionary learning
for multispectral image denoising, which did not enforce the
sparsity constraint on the decomposition coefficient.

Most of the previous low-rank tensor modeling methods
either add up the ranks along all tensor modes, or do not
enforce any constraint on the ranks along each tensor modes.
Nevertheless, they neglect that the spatial, spectral, non-local
mode are with different physical meaning and different dimen-
sion. The rank along each mode is a reflection of its intrinsic
structure correlation. That is to say, the different modes along
the tensor possess different intrinsic manifold, namely different
low-rank property. It has been proved that a major difference
with the matrix case, however, is the fact that the different
n-ranks of a higher-order tensor are not necessarily the same
[52]. Thus, we argue that it is unreasonable to ignore the low-
rank property discrepancy along each mode.

In this work, we first give a detailed analysis about the rank
properties along each mode of the constructed 3-order tensor
via the high-order singular value decomposition (HOSVD)
[53]. We discover that low-rank property of the non-local self-
similarity and spectral correlation is usually superior to that
of the spatial (Section III-A). This suggests that the intrinsic
rank among each mode is different and motivates us to take
the discrepancy of the structural correlation along each mode
into consideration. We demonstrate that, counterintuitively, the
most common practice of previous methods by equally adding
up all the ranks among each mode would negatively affect the
final performance. Consequently, we figure out a simple yet
effective solution for HSIs low-rank modeling (Section III-B).

In addition, for the sparse error modeling, most of the
previous HSIs mixed noise removal methods mainly utilize the
L1 sparsity. The sparse noise in HSIs caused by the different
response of neighborhood detectors, is usually non-periodical
horizontal or vertical lines due to the push-broom imaging
mechanism [54]. Such a simple L1 constraint has unexpectedly
neglected the intrinsic structural correlation characteristic of
the line pattern sparse noise. In this work, we show that the
low-rank property exists not only in the HSIs, but also in
the spare error component namely the stripe noise. Thus, we
extend our HSIs denoising model to the robust tensor principal
component analysis RPCA with low-rank constraints for both
the HSIs and stripe noise (Section III-C).

Finally, the previous HSIs methods are suitable for specific
tasks, such as the denoising [4], inpainting [7], deblurring
[6], destriping [2]. In this work, we show that the OLRT is
applicable for general HSIs restoration and present an efficient
optimization method to handle various low-level HSIs restora-
tion tasks in a unified model (Section IV). Compared with the
state-of-the-art HSIs restoration methods, the contributions of
the proposed work are three-folds:
‚ We explore two very important fundamental problems in

HSI restoration community: HSIs modeling and sparse
noise modeling from the low-rank tensor perspective, and
provide a guidance about how much each low-rank property
contributes to the restoration. Consequently, we propose an
optimal low-rank tensor (OLRT) model by joint spectral
and non-local low-rank tensor prior for HSIs restoration,
and further extend the OLRT to the RPCA situation.

‚ Compared with previous methods designed for the specific
task, the proposed low-rank tensor prior is very flexible for
general HSIs restoration tasks, such as denoising, destriping,
deblurring, and inpainting. We believe that the OLRT could
be further employed for other HSIs restoration tasks.

‚ The proposed method has been extensively tested on various
HSIs datasets and tasks and significantly outperforms the
state-of-the-arts both quantitative and qualitative. Moreover,
we show our OLRT strategy is also beneficial to other state-
of-the-arts HSIs restoration methods.

II. RELATED WORK

In Table I, we list the representative HSIs restoration
methods. We mainly consider the methodology, year, tasks,
information utilization, and brief description. The interested
reader could refer to survey work HSIs denoising [55], de-
striping [56] and inpainting [57] for detailed description.
1-D Sparse Representation: The sparse representation meth-
ods treat the HSIs restoration as an ill-posed inverse problem
by minimizing an energy functional with sparsity constraint
on the HSIs. The most representative methods are dictionary
learning [8]–[11]. For example, Akhtar et al. [58] utilized the
linear correlation between the HSIs and MSIs dictionary for
HSIs super-resolution. Lu et al. [11] presented a superpixel
based spectral-spatial adaptive sparse representation method
for HSIs denoising. Chang et al. [8] integrated the unidi-
rectional total variation and sparse representation regulariza-
tion for mixed noise removal. Numerous spatial-spectral total
variational HSI restoration methods have been proposed [2]–
[7]. Yuan et al. [4] proposed a HSIs denoising method by
employing a spectral-spatial adaptive total variation model.
Henrot et al. [5] proposed a spatial and spectral smoothness
prior with a positivity constraint for HSIs deblurring. Cheng
et al. [7] further took advantage of nonlocal total variation for
remote sensing image inpainting.
2-D Low-Rank Matrix Recovery: The sparse representation
mathematically models the image patch as a vector. Thus,
the 2-D low-rank-based matrix recovery methods have been
naturally proposed to better preserve the image structure [12]–
[22]. For example, Fu et al. [15] proposed a spectral and spatial
joint low-rank model for coded HSIs reconstruction. Zhang
et al. [12] took advantage of the low-rank property along the
spectral mode by lexicographically ordering the 3-D HSIs into
a 2-D matrix. Rasti et al. [16] further exploited the Stein’s
unbiased risk estimator for fully automatic parameter selection.
The nonconvex low-rank regularizers, i.e., weighted Schatten
p-norm [14], smooth rank approximation [59], L0 resemble
normalized ε-penalty [60], have been extensively studied to
offer better approximation to the original low-rank assumption.
The hybrid local sparsity + global low-rank framework has
also attracted great attention. He et al. [20] proposed a total
variation-regularized low-rank matrix factorization method for
HSIs restoration. Zhao et al. [18] jointly utilized the sparse
representation and low-rank constraint in spatial and spectral
domains for HSIs denoising.
3-D Low-Rank Tensor Approximation: Although the vector
/matrix-based methods have achieved excellent restoration
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Table I
ILLUSTRATION OF EXISTING HSIS RESTORATION METHODS. LR DENOTES THE LOW-RANK FOR SHORT.

Category Paradigm Method Year Tasks Brief Description Information Utilization

1-D Spare
Representation

Gradient
Based

Method

Shen [2] 2009 Inpainting Huber-Markov Model Spatial Smoothness
Bouali [3] 2011 Destriping Unidirectional Variational Model Spatial Smoothness
Yuan [4] 2012 Denoising Spectral-Spatial Adaptive Total Variation Model Spectral-Spatial Sparsity

Henrot [5] 2013 Deblurring Spectral-Spatial Smoothness + Positive Constraint Spectral-Spatial Smoothness
Zhao [6] 2013 Deblurring Total Variation + L1 Sparsity Spatial Smoothness + Sparsity

Cheng [7] 2014 Inpainting Multichannel Nonlocal Total Variation Model Spectral-Spatial Smoothness + Nonlocal

Dictionary
Learning

Chang [8] 2014 Denoising Unidirectional Total Variation + Dictionary Learning Spatial Smoothness + Sparsity
Ye [9] 2015 Denoising Multitask Sparse Nonnegative Matrix Factorization Spectral-Spatial Sparsity
Fu [10] 2015 Denoising Adaptive Spatial-spectral Dictionary Learning Spectral-Spatial Sparsity + Nonlocal Similarity
Lu [11] 2016 Denoising Spectral-Spatial Adaptive Sparse Representation Spectral-Spatial Sparsity

2-D Low-rank
Matrix Recovery

Classical LR

Zhang [12] 2014 Denoising Spectral LR Model Spectral Correlation
Cao [13] 2015 Denoising LR Matrix Factorization Spectral Correlation
Xie [14] 2016 Denoising Weighted Schatten-norm LR Spectral Correlation
Fu [15] 2016 Reconstruction Joint Spectral-spatial LR Nonlocal Similarity + Spectral Correlation

Rasti [16] 2017 Denoising Parameter-free LR Sparsity + Spectral Correlation

Hybrid

Lu [17] 2013 Destriping Graph-regularized LR Representation Spectral Smoothness + Spectral Correlation
Zhao [18] 2015 Denoising Sparse Representation + Low-rank Constraint Spectral Sparsity + Spectral Correlation

Chang [19] 2016 Destriping TV + LR Decomposition Spatial Smoothness
He [20] 2016 Denoising TV-regularized LR Matrix Factorization Spatial Smoothness + Spectral Correlation

Zhuang [21] 2018 Denoising Subspace-Based LR Spectral Correlation
Hu [22] 2020 Denoising Nonconvex 3D TV + Low-rank Spectral-Spatial Smoothness + Correlation

3-D Low-rank
Tensor Approximation

Canonical
Polyadic

Decomposition

Xie [23] 2016 Denoising CP + Tucker LR Decomposition Nonlocal Similarity + Spectral Correlation
Xue [24] 2019 Denoising CP + Tucker LR Decomposition Nonlocal Similarity + Spectral Correlation
Xie [25] 2019 Inpainting Nonconvex CP/Tucker LR Decomposition Spectral Correlation

Tucker
Decomposition

Peng [26] 2014 Denoising Tucker Decomposition Based Dictionary Learning Nonlocal Similarity + Spectral Correlation
Dong [27] 2015 Denoising Tucker Decomposition + Laplacian Scale Mixture Nonlocal Similarity + Spectral Correlation
Chang [28] 2017 Denoising Hyper-laplacian + Unidirectional LR Tensor Nonlocal Similarity + Spectral Smoothness

Ng [29] 2017 Inpainting Weighted Tucker LR Decomposition Spectral Correlation
Wang [30] 2018 Denoising Spatial-spectral TV-Regularized Tucker LR Decomposition Spectral Correlation + Spectral-Spatial Smoothness
Chen [31] 2018 Destriping Anisotropic TV + Tucker LR Decomposition Spectral Correlation + Spectral-Spatial Smoothness

Ji [32] 2018 Inpainting Nonconvex 4-order Tucker LR Decomposition Temporal-Spatial-Spectral Correlation + Nonlocal
Zhang [33] 2019 Reconstruction Nonconvex Tucker LR Decomposition Nonlocal Similarity + Spectral Correlation

He [34] 2019 Denoising Spectral subspace-Based Unidirectional LR Tensor Recovery Nonlocal Similarity + Spectral Correlation
Zhang [35] 2020 Denoising Spatial-spectral TV-Regularized Tucker LR Decomposition Spectral Correlation + Spectral-Spatial Smoothness
Chen [36] 2020 Denoising Weighted Group Sparsity-Regularized Tucker LR Decomposition Spectral Correlation + Spatial Sparsity

Chang [37] 2020 Unified Weighted LR Tensor Recovery Nonlocal Similarity + Spectral Correlation
Gong [38] 2020 Denoising Tucker Decomposition-Based Shared Dictionary Learning Nonlocal Similarity + Spectral Correlation

t-SVD
Fan [39] 2018 Denoising Spatial-spectral TV-Regularized t-SVD LR Decomposition Spectral Correlation + Spectral-Spatial Smoothness

Kong [40] 2019 Denoising Block Diagonal t-SVD LR Decomposition Nonlocal Similarity + Spectral Correlation
Zheng [41] 2019 Denoising Low-Fibered-Rank t-SVD Decomposition Spectral Correlation

Tensor-ring
Decomposition

Chen [42] 2020 Super-resolution Tensor-Ring LR Decomposition Nonlocal Similarity + Spectral Correlation
Xu [43] 2020 Super-resolution Graph-Regularized High-order Tensor-Ring LR Decomposition Spectral Correlation

Tensor Train
Decomposition

Dian [44] 2019 Super-resolution 4-order Low Tensor Train Rank Nonlocal Similarity + Spectral Correlation

Block Term
Decomposition

Xiong [45] 2019 Denoising Spectral-spatial L0 TV-regularized Block Term Decomposition Spectral Correlation + Spectral-Spatial Smoothness

results, they inevitably cause damages to the spectral-spatial
structural correlation of the HSIs. To alleviate this issue, the
low-rank tensor approximation methods have sprung up in
recent years [23]–[45]. Various tensor decompositions have
been introduced for HSIs modeling, such as CP [23], Tucker
[27], t-SVD [39], tensor ring [42], tensor-train [44], block term
[45] etc. The spectral correlation and non-local self-similarity
are two intrinsic characteristics underlying an HSI. Peng firstly
et al. [26] modeled the spectral and non-local similarity
simultaneously. Latter, there are more sophisticated methods
with additional low-rank prior knowledge about constructed
tensor [23], [27], [28], [34].

Most of the low-rank tensor models regularize the sum of
the rank along each mode of the constructed tensor [23],
[29], [32], [33], [39], [41], [44], [61], [62]. However, it
is unreasonable to enforce low-rank constraint along each
mode equally, since the rank along each mode has different
physical meaning and different dimension. The KBR [63]
and our previous work LLRT [28] have already noticed this
inconspicuous but important phenomenon. In this work, we
go further along this research track and figure out the optimal
low-rank tensor mode for HSIs restoration. Different from the
optimal rank selection of each mode [64], [65], the optimal
low-rank here means the best low-rank combination of the
HSIs among each mode. Moreover, we show that our model
is very flexible for general HSIs restoration, such as denoising,
destriping, deblurring, and inpainting.

This work is the journal extension of our conference publi-

cation [28]. The differences are three-folds:
‚ Low-rank property exploration: In our conference ver-

sion, we explore the low-rank property in the hyperspec-
tral images and difference of the low-rank property along
each mode. In this work, we go further by providing a
guidance how much each low-rank property contributes to
the restoration and figure out the optimal combination of
the low-rank property along each mode. Moreover, in this
work, we explore the low-rank properties for both the image
component and the sparse error component.

‚ Low-rank tensor recovery model: In our conference ver-
sion, we propose a unidirectional low-rank tensor recovery
model. In this work, for HSIs modeling, we propose an
optimal low-rank tensor (OLRT) model by a joint spectral
and non-local low-rank tensor prior. This work additionally
takes the linear degradation operator into consideration,
such as the blur or sampling mask. Thus, the loss function
between the two papers are obviously different. Moreover,
we further extend our OLRT model to the RPCA for
handling the stripe noise in HSIs.

‚ HSIs restoration tasks: In our conference version, we only
handle the HSIs Gaussian random noise. In this work, we
further extend our tasks to the HSIs deblurring, inpainting
and destriping. As far as we know, few works have been
proposed for unified HSIs restoration. Moreover, in each
HSIs restoration task, the proposed OLRT has consistently
outperformed the state-of-the-arts approaches by a large
margin, especially for the HSIs deblurring and inpainting.
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Figure 1. Low-rank property analysis of the constructed 3-order tensor along
each mode via HOSVD. (a)-(c) is the visualization of singular values bigger
than 1.5, bigger than 1 and smaller than 1.5, and overall bigger than 1 elements
in the core tensor, respectively. (d)-(f) is the mean profile of (c) across
spatial (mode-1), spectral (mode-3), and non-local self-similarity (mode-2),
respectively. (g)-(i) is the corresponding denoising result via spatial, spectral,
and non-local self-similarity based low-rank tensor model, respectively.

III. LOW-RANK PROPERTY IN HSIS

A. Closer Look at Low-Rank Property of Tensor

The conventional tensor sparsity measures [23], [29], [32],
[33], [39], [41], [44], [61], [62] usually extend the 2-order
sparsity measure to higher-order case by simply adding up
rank along each modes. However, these works neglect a fact
that the different n-ranks of a higher-order tensor are not
necessarily the same, indicating that the rank of each mode
is closely related to its intrinsic low-rank subspace.

To understand this, we explore the low-rank property of each
mode of a constructed 3-order tensor X i P R49ˆ350ˆ31 via
HOSVD. We performed this experiment on hundreds tensor
with one as a representative. In Fig. 1(a)-(c), we give a visual
understanding how the singular values distribute in the core
tensor. Note that, most of small singular values are trivial.
We just choose the larger singular values associating with
the major projection orientations. In Fig. 1(d)-(f), we show
the mean profile of the core tensor across each mode. To
remove the absolute dimension magnitude effect, we uniformly
select the first 20 percent principal components along spatial
(49 ˚ 0.2 « 10), spectral (31 ˚ 0.2 « 7), and non-local
(350 ˚ 0.2 « 70) mode in a relative scale. The corresponding
percentage energy value is 53.66%, 71.39%, and 99.58%,
respectively. The singular values of the core tensor exhibit
significant sparsity with different degrees along each mode.
Along the non-local self-similarity mode (mode-2), due to the
strong redundancy of the non-local cubics, the coefficients tend
to be decreasing extremely fast to zeroes. While along the
spatial and spectral mode, albeit still approximately decreasing
along the mode, most of the coefficients are non-zeros. Con-
sequently, the corresponding denoising results are shown in
Fig. 1(g)-(i). The result obtained by unfolding along the non-
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Figure 2. Effectiveness of low-rank prior along each mode and their combi-
nation. Spa, Spe, NL denotes the spatial, spectral and non-local respectively.
LLRT is our conference paper [28].

local mode is much better than the others, since the sparser
representation allow the most improvement [66].

The observation in Fig. 1 has truthfully reflected the intrinsic
difference of structure correlation along each mode. The low-
rankness of HSIs in non-local dimension is obviously stronger
than that in the spectrum and spatial mode. Next is the
spectral correlation. For the spatial neighborhood regions such
as the spatial texture area, its low-rankness property is the
weakest. Therefore, we argue non-local self-similarity is the
key property contributing to HSIs restoration performance.
This motivates us to treat the rank along each mode differently.

B. Optimal Low-Rank Tensor (OLRT) Prior for HSIs

The non-local dimension is more evidently low-rank (as
shown in Fig. 1) and neglecting others can help improve
efficiency. In our conference version LLRT [28], we only in-
corporate the low-rank property across the non-local mode and
discard these weaker correlations across spatial and spectral
mode. However, it might be not so rational that neglecting
other useful low-rankness along other dimensions, especially
in spectrum, can help improve HSIs recovery quality. To
figure out the optimal low-rank modeling in HSIs, we give
a comparison of the combination of low-rank prior along each
mode, as shown in Fig. 2. We have the following observations:
‚ For single mode-based low-rank prior (red, purple, green

curve), we can find that the non-local mode achieves the
best performance, which further validates our conclusion:
the structure correlation along the non-local mode is much
stronger than that of the spatial or spectral mode.

‚ The spectral mode low-rank does facilitate the final recovery
result (compare purple and grey). The spatial mode low-rank
always bring negative influence to the final performance
(compare purple and cyan, also grey and blue), which means
its low-rank assumptions cannot be met, especially for the
texture neighborhood areas.

‚ The combination of the non-local and spectral low-rank has
achieved the best performance (grey curve) and works better
than the combination of low-rank along all modes (blue
curve), which more reasonably capture the intrinsic sparsity
inside the constructed tensor.
From the above analysis, we can conclude that the non-

local self-similarity is the key property contributing to HSIs
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Figure 3. Low-rank property analysis of the sparse error, namely the stripe
in HSIs. (a) The stripe cubic with same size as the hyperspectral images. (b)
The singular value curve of (a) along the spatially vertical mode.

restoration. The spectral correlation property does facilitate the
final recovery result. In this work, we propose a joint spectral
and non-local low-rank tensor prior for HSIs modeling.

C. Low-Rank Property in Sparse Error

Not only the random noise N P RRˆCˆB degenerates the
HSIs quality, but also the structural stripe noise E P RRˆCˆB
exists in real HSIs, which is mainly caused by the difference
in the response of multi-detectors, calibration error, and so
on [54]. In this work, we formulate this procedure into 3-
order image decomposition framework as Eq. (1). Different
from the random noise, the stripe noise exhibits a significantly
directional appearance. Interested reader would refer to [19],
[54] for more details about the stripe.

It is widely accepted that the high-dimensional data usually
lies on an intrinsic low-dimensional manifold. The low-rank
property is ubiquitous, in which exists not only in the HSIs
component, but also the sparse error component. In Fig. 3,
we show the low-rank property of the stripe noise. We unfold
the 3-order sparse error stripe component along the spatially
vertical mode, and then perform the SVD on it. From Fig. 3(b),
it can be seen that the singular values rapidly decrease to zero.
It is natural for us to understand this that the vertical stripe
component possesses much more simple structures (similar
line pattern with the same direction) than that of the image
component. Our previous work mainly considered the single
band case [19]. In this work, we extend this low-rank property
from the single band image to 3-order cubic.

IV. LOW-RANK TENSOR HSIS RESTORATION MODEL

A. Notations and Preliminaries

In this paper, we denote tensors by boldface Euler script
letters, e.g., X . Matrices are represented as boldface capital
letters, e.g., X; vectors are expressed with boldface lowercase
letters, e.g., x, and scalars are denoted by lowercase letters,
e.g., x. The i-th entry of a vector x is denoted by xi, element
pi, jq of a matrix X is denoted by xij , and element pi, j, kq
of a 3-order tensor X is denoted by xijk. The Frobenius
norm of an N-order tensor X P RI1ˆI2ˆ¨¨¨ˆIN is the square
root of the sum of the squares of all its elements, i.e.,
||X ||F “

b

řI1
i1“1

řI2
i2“1 ¨ ¨ ¨

řIN
iN“1 x

2
i1i2¨¨¨iN

. Tensor matri-
cization, also named as unfolding or flattening, is the process
of reordering the elements of an N-order tensor into a matrix.
The mode-n matricization Xpnq P RInˆpI1¨¨¨In´1In¨¨¨IN q of a

tensor X P RI1ˆI2ˆ¨¨¨ˆIN is obtained by taking all the mode-
n fibers to be the columns of the resulting matrix. Thus, the
n-rank of a given tensor can be analyzed by means of matrix
techniques. The rank of the matrix unfolding Xpnq is equal to
the n-rank of X , i.e., ranknpX q “ rankpXpnqq [67].

B. HSIs Restoration Model
The task of HSIs restoration is to estimate the clean image

X in presence of the degraded image Y under different degra-
dation situations. According to Eq. (1), the HSIs restoration
problem can be formulated in the following form:
!

X̂ , Ê
)

“ argmin
X ,E

1
2 ||T pX q ` E ´Y ||2F ` ωPhpX q ` ρPspEq, (2)

where PhpX q and PspEq denote the regularization terms to
enforce the solution with desired property on the clean HSIs
and sparse error respectively, ω, ρ are tradeoff regularization
parameters. In section III-B, we have analyzed the optimal
low-rank property of the HSIs. Here we do not consider the
sparse error E and replace the PhpX q with the joint spectral
and non-local low-rank tensor prior as follow:
!

X̂ , L̂
j

i

)

“ arg min
X ,Lj

i

1

2
||T pX q ´Y ||2F

`ωj
ř

j

ř

i

´

1
λ2
i
||Rj

iX ´Lj
i ||

2
F ` rankjpL

j
i q

¯

,

(3)

where Rj
iX represents the constructed low-rank tensor for

each exemplar cubic i along j-mode, Lj
i is its low-rank

approximation, i represents the location index of the sliding
window and j P t2, 3u denotes the mode along the non-
local and spectral dimension. ωj and λi the regularization
parameters, in which ωj is fixed for the balance between rank
constraint along each mode, and λi is dynamically changed
according to the noise level at different location and iteration.
The basic idea of the model is that the intrinsic subspace of the
non-local self-similarity and spectral correlation can be well
depicted by the joint low-rank tensor prior, meanwhile the first
term reflects the measurement of the linear degradation.

C. Optimization
Due to the difficulty of estimating multiple variables di-

rectly, we adopt the alternating minimization scheme to solve
the objective functional (3) with respect to the whole image
X and low-rank tensor Lj

i per each location.
1) Low-Rank Tensor Estimation Lj

i : In this subproblem,
we fix the other variable X and optimize the Lj

i by with its
tensor unfolding formation

L̂
j

i “ argmin
Lpjqi

1

λ2i
||RiXpjq ´ Lpjqi ||

2
F ` ||L

pjq
i ||˚, (4)

where RiXpjq corresponds to the matrix of the unfolding tensor
Rj
iX along the mode-j, ||Lpjqi ||˚ means the matrix nuclear

norm to replace rankpLpjqi q as its convex surrogate func-
tion. Equation (4) is a typical low-rank matrix approximation
problem which has a closed-form solution and can be easily
solved by the singular values thresholding algorithm [68]. In
our implementation, we borrow the idea of the reweighting
strategy from [69] to improve the performance. After each
Lpjqi is obtained, the tensor folding is performed to transform
them into 3-order tensors.



6

Algorithm 1 The optimal low-rank tensor for HSIs restoration
Require: Input image Y

1: Initialize:
2: ‚ Set parameters τ, β, ωj and the noise level λ2i ;
3: ‚ Set Jp1q “ 0, X p1q

“ Y ;
4: ‚ Similar cubics grouping to form the low-rank tensor;
5: for l=1:L do
6: Low-rank Tensor Estimation: obtain Lpjqi by Eq. (4);
7: Image Restoration: compute X pl`1q via Eq. (8);
8: Auxiliary Variable: update Zpl`1q via Eq. (9);
9: Lagrange Multiplier: update J pl`1q via Eq. (7c);

10: If mod(l, 10) = 0, update cubic grouping;
11: end for
Ensure: Clean Image X .

2) Image Restoration X : By ignoring terms independent
of X in (3), we obtain following subproblem:

X̂ “ argmin
X

1
2 ||T pX q ´Y ||2F ` ωj

ř

j

ř

i
1
λ2
i
||Rj

iX ´Lj
i ||

2
F . (5)

Generally, Eq. (5) is a quadratic optimization and can be
solved by Gauss-Seidel algorithm. However, it is time con-
suming and the transformation of the 3D tensor HSI into the
vector would damage the spatial-spectral structural correlation.

Fortunately, the first term in Eq. (5) is an reflection of the
linear measurement of different degradations T . It is worth
noting that the computation is efficient in frequency domain
than that of the image domain [70], which is a common
practice in 2D image restoration. The theoretical basis is based
on the Plancherel’s theorem [71], which states that the sum of
the square of a function equals the sum of the square of its
Fourier transform. The energy equivalence between image and
Fourier domain can be built for all possible values of X .

The second term in Eq. (5) is a low-rank constraint on
each cubic. Most of the sparse and low-rank methods are
patch/cubic based by the operator R, which is an linear
operator that extracts the subcubic from the HSIs. Fortunately,
the operator R can be also solved on a pixel-by-pixel manner
with fast speed. Such a gap between the first and second term
inspires us to separate the subcubic extraction operator R from
the linear operator T so that they can be rapidly computed in
Fourier transform domain and pixel-wise domain, respectively.

The main idea of the ADMM is to convert the unconstrained
minimization problem on X in Eq. (5) into a constrained
one by introducing a auxiliary variable, such that we could
decouple the Eq. (5) into two easier subproblems with closed-
from solution. Thus, we introduce an auxiliary variable Z , by
applying ADMM to (5), we obtain

!

X̂ , Ẑ
)

“ argmin
X ,Z

1
2 ||T pX q ´Y ||2F

`ωj
ř

j

ř

i
1
λ2
i
||Rj

iZ ´Lj
i ||

2
F `

β
2 ||Z ´X ´ J

β ||
2
F ,

(6)

where Z P RRˆCˆB is an auxiliary variable, J is the La-
grangian multiplier, β and is a positive scalar. The optimization

Algorithm 2 The tensor RPCA model for HSIs destriping
Require: Input image Y

1: Initialize:
2: ‚ Set parameters ρ, ωj and the noise level λ2i ;
3: ‚ Similar cubics grouping to form the low-rank tensor;
4: for n=1:N do
5: Image Restoration: compute X via Eq. (11a);
6: Low-rank Approximation: solve Eq. (11b) for Lpjqi ;
7: Sparse Error Estimation: solve Eq. (11c) for E;
8: If mod(n, 10) = 0, update cubic grouping;
9: end for

Ensure: Clean Image X and stripe component E .

of (6) consists of the following iterations:

X pl`1q
“ argmin

X
1
2 ||T pX q ´Y ||2F `

β
2 ||Z

plq
´X ´ J plq

β ||2F (7a)

Zpl`1q
“ argmin

Z
ωj

ř

j

ř

i
1
λ2
i
||Rj

iZ ´Lj
i ||

2
F `

β
2 ||Z ´X pl`1q

´ J plq

β ||2F

(7b)
J pl`1q

“ J pl`1q
` βpX pl`1q

´Zpl`1q
q (7c)

βpl`1q “ τβplq, (7d)

where τ ą 1 is a constant. Thus the variables X and Z can
be solved with closed-form solution efficiently:

X pl`1q
“F´1

ˆ

FpT T
pYq`pβplqZplq´J plq

qq
F˚pT q˝FpT q`βplqI

˙

, (8)

Zpl`1q
“

´

2ωj

λ2
i

ř

j

ř

i pR
j
i q
TRj

i ` β
plqI

¯´1

ˆ

´

2ωj

λ2
i

ř

j

ř

i pR
j
i q
TLj

i ` β
plqX pl`1q

`J plq
¯

,
(9)

where F p‚q denotes the n-D fast Fourier transform, F˚
p‚q its

conjugate and F´1
p‚q the inverse transform, I is the identity

tensor, superscript T is the transpose operator, pRj
i q
TRj

i

means the number of overlapping cubics that cover the pixel
location i and along j-mode, and pRj

i q
TLi means the sum

value of all overlapping reconstruction cubics that cover the
pixel location i and along j-mode. Thus, Eq. (8) can be
computed via 3-D fast Fourier transforms efficiently and Eq.
(9) can be fast computed in pixel-to-pixel tensor division. The
overall procedure is summarized in Algorithm 1.

D. Extension to Tensor RPCA for HSIs Destriping

In HSIs, there always exists the stripe noise coexisting
with the random noise [72]. In recent years, the stripe noise
removal has received more and more attention. For [13], [73],
this kind of methods hold the point that the stripe line is
an structure noise, and introduce the mixture of Gaussians
(MoG) noise assumption also its variants to adapt real mixed
noise characteristics. Another research direction starts from
the image decomposition perspective [17], [19], in which the
stripe noise is regarded as an structural line pattern component,
equally treated with the image component. Our method follows
the image decomposition manner. Previous methods usually
model the stripe noise via conventional L1 norm or low-rank
matrix prior. In section III-C, we have analyzed the low-rank
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(a) Original Image (b) Noisy Image (e) LRTA(c) BM3D (d) HyRes

(k) LLRT(g) NMF

(f) LRMR

(j) ITSReg(h) BM4D (i) TDL

(PSNR, SSIM) (22.10, 0.1724) (37.92, 0.9185) (38.57, 0.9201) (37.49, 0.8716) (34.86, 0.7763)

(39.70, 0.9056) (40.87, 0.9428) (40.96, 0.9524) (41.53, 0.9529) (43.56, 0.9780)
(l) OLRT

(43.86, 0.9788)

Figure 4. Simulated random noise removal results at 510nm band of image Flower under noise level λ2“20 on CAVE dataset. (a) Original image. (b) Noisy
image, Denoising results by (c) BM3D, (d) HyRes, (e) LRTA, (f) LRMR, (g) NMF, (h) BM4D, (i) TDL, (j) ITSReg, (k) LLRT, (l) OLRT.

(a) Original Image (b) Noisy Image (e) LRTA(c) BM3D (d) HyRes

(k) LLRT(g) NMF

(f) LRMR

(j) ISTReg(h) BM4D (i) TDL

(PSNR, SSIM)  (8.13, 0.0285) (26.38, 0.7087) (28.31, 0.7344) (26.70, 0.6587) (21.66, 0.3131)

(26.72, 0.5506) (29.27, 0.7779) (29.30, 0.8181) (31.06, 0.8813)(29.76, 0.8540)
(l) OLRT

(31.40, 0.8815)

Figure 5. Simulated random noise removal results at 510nm band of image Watercolor under noise level λ2“100 on CAVE dataset. (a) Original image. (b)
Noisy image, Denoising results by (c) BM3D, (d) HyRes, (e) LRTA, (f) LRMR, (g) NMF, (h) BM4D, (i) TDL, (j) ITSReg, (k) LLRT, (l) OLRT.

property of the stripe cubics. Thus, we propose a tensor RPCA
for modeling both the HSIs and stripe components:
!

X̂ , L̂
j

i , Ê
)

“ arg min
X ,Lj

i ,E

1
2 ||X ` E ´Y ||2F ` ρrank1pEq

`ωj
ř

j

ř

i

´

1
λ2
i
||Rj

iX ´Lj
i ||

2
F ` rankjpL

j
i q

¯

.
(10)

Here, we do not consider the linear operator T . On one hand,
the low-rank tensor priors effectively regularize the solution
space for the HSIs and sparse error, respectively. On the other
hand, better estimated HSIs will promote better sparse error
estimation and vice versa. As for the optimization of (10), we
still adopt the alternating minimization scheme:

X̂ “ argmin
X

1
2 ||X ` E ´Y ||2F ` ωj

ř

j

ř

i
1
λ2
i
||Rj

iX ´Lj
i ||

2
F (11a)

L̂
j

i “ arg min
X ,Lj

i

1
λ2
i
||Rj

iX ´Lj
i ||

2
F ` rankjpL

j
i q (11b)

Ê “ argmin
E

1
2 ||X ` E ´Y ||2F ` ρrank1pEq, (11c)

where each subproblem admits the closed form solutions. The
overall procedure is summarized in Algorithm 2.

V. EXPERIMENTS AND DISCUSSION

A. Experimental Setting

Our approach is tested on comprehensive classical HSIs
restoration tasks to test the robustness and effectiveness of
the proposed OLRT prior. For HSIs denoising, the competing
methods include 1-D sparse representation based methods
(SDS [74]), 2-D low-rank matrix recovery methods (LRMR
[12], NMF [9], HyRes [16]), state-of-the-art tensor methods
(BM3D [75], LRTA [76], BM4D [77], TDL [26], ITSReg
[23], LLRT [28]). For HSIs deblurring, the competing methods
include single image based deblurring method hyper-Laplacian
(HL) [78], HSIs deblurring methods fast positive deconvo-
lution (FPD) [5] and spectral-spatial total variation (SSTV)
[79]; For HSIs inpainting, we compare with spectral-spatial
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Table II
QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER SEVERAL NOISE LEVELS ON CAVE DATASET.

λ2 Index Methods
Noisy BM3D SDS LRTA HyRes LRMR NMF BM4D TDL ITSReg LLRT OLRT

5

PSNR 34.15 45.46 41.13 44.42 47.30 44.20 46.17 45.61 47.24 48.13 49.42 49.62
SSIM 0.7496 0.9824 0.9691 0.9712 0.9875 0.9659 0.9873 0.9849 0.9887 0.9902 0.9925 0.9927

ERGAS 112.65 30.53 54.64 34.92 24.84 36.71 28.68 30.40 24.95 21.56 19.09 18.57
SAM 0.4823 0.1024 0.1590 0.1398 0.0970 0.2001 0.0975 0.1161 0.0845 0.0916 0.0728 0.0721

10

PSNR 28.13 42.09 39.74 41.36 41.75 39.27 43.15 44.59 44.30 45.77 46.67 47.07
SSIM 0.4371 0.9665 0.9484 0.9499 0.9689 0.9094 0.9702 0.9784 0.9797 0.9802 0.9872 0.9877

ERGAS 236.40 45.06 61.86 49.53 46.96 64.81 39.65 33.33 34.86 30.53 26.74 25.53
SAM 0.7199 0.1395 0.2160 0.1719 0.1583 0.3343 0.1358 0.1295 0.1025 0.1086 0.0841 0.0840

30

PSNR 18.59 36.40 32.10 36.15 36.36 31.36 36.53 38.90 39.03 40.51 41.55 41.78
SSIM 0.0988 0.9034 0.6709 0.8787 0.9133 0.6451 0.8565 0.9277 0.9486 0.9488 0.9683 0.9685

ERGAS 709.29 88.29 145.88 91.40 86.32 157.65 86.25 65.38 63.54 53.05 48.20 46.70
SAM 1.0414 0.2489 0.5050 0.2479 0.2501 0.6021 0.2465 0.2598 0.1520 0.1374 0.1192 0.1180

50

PSNR 14.15 32.66 25.32 32.44 33.85 26.67 31.98 35.96 36.42 37.75 38.93 39.13
SSIM 0.0432 0.8320 0.3451 0.7932 0.8646 0.4000 0.7113 0.8666 0.9175 0.9271 0.9521 0.9484

ERGAS 1181.95 115.06 280.88 118.64 114.73 264.28 123.23 91.51 85.58 70.16 65.52 63.46
SAM 1.1741 0.2877 0.7006 0.2843 0.3189 0.7534 0.3148 0.3575 0.2000 0.1619 0.1424 0.1457

100

PSNR 8.13 29.27 17.90 29.20 30.61 20.84 26.95 30.82 32.91 33.01 35.40 35.41
SSIM 0.0122 0.7460 0.1047 0.6945 0.7676 0.1850 0.4643 0.6956 0.8344 0.8648 0.9143 0.9022

ERGAS 2364.05 171.94 693.94 175.91 165.68 469.26 225.55 141.18 128.22 120.77 98.91 97.82
SAM 1.3271 0.3938 0.9690 0.3381 0.4639 0.9306 0.4321 0.5014 0.3079 0.2376 0.1895 0.2085

total variational based inpainting (SSTVI) [79], weighted
nuclear norm minimization (WNNM) [80], fast hyperspectral
inpainting (FastHyIn) [21] and tensor based AWTC [29]. All
codes are provided by the authors and the parameters are
fine-tuned by default or following the rules in their papers to
achieve the best performance. The Matlab code of proposed
method can be downloaded at the author’s homepage1.

The spatial and spectral quality of the denoising results are
very important for the subsequent processing, but is difficult
to judge visually. In order to give an overall evaluation, four
quantitative indices are employed: peak signal-to-noise ratio
(PSNR), structure similarity (SSIM), erreur relative globale
adimensionnelle de synthese (ERGAS) [81] and spectral angle
map (SAM) [82]. PSNR and SSIM are two spatial-based
indexes, while ERGAS and SAM are spectral-based indexes.
The bigger PSNR and SSIM values are, the smaller ERGAS
and SAM values are, the better the restored images are.

We evaluate the competing methods on several representa-
tive datasets: Columbia Multispectral Database (CAVE), Wash-
ington DC, Compact High Resolution Imaging Spectrometer
(CHRIS), HYDICE Urban, PaviaU, Cuprite, and Airborne
Visible/Infrared Imaging Spectrometer Dataset (AVIRIS). The
CAVE, Washington DC, PaviaU and Cuprite are used for
simulated experiments, while the Urban, CHRIS and AVIRIS
are used to test the real cases.

B. Comparison with State-of-The-Arts

1) HSIs Denoising: Zero mean additive white Gaussian
noises with difference variance are added to generate the
noisy observations. The visual results of single band in CAVE
Flower under noise level 20 are shown in Figs. 4. Compared
with other methods, the OLRT exhibits more clear details
in texture regions or edges, meanwhile produce clean results
in smooth regions with best quantitative values. Moreover,
compared with our conference work LLRT [28], the OLRT
is visually more pleasant with higher quantitative values.

1https://owuchangyuo.github.io/

The overall quantitative assessment results by the competing
denoising methods under different noise levels are shown in
Table II. The LLRT and OLRT outperforms the state-of-the-
arts by a large margin. Moreover, the OLRT achieves the
best performance in most of the quantitative assessments,
especially for the low level noise cases.

2) HSIs Deblurring: In this section, we compare the pro-
posed method with the state-of-the-art HSIs deblurring meth-
ods. We apply the 3D convolution (Matlab function fftn in
frequency domain) to obtain the blur HSIs. To validate the
robustness of our method, we test three kinds of blur cases:
light Gaussian blur, heavy Gaussian blur, and uniform blur.
The quantitative results on CAVE dataset are reported in Table
III. Here we have three observations. First, our OLRT has
overwhelming advantage over the competing methods. That is
to say, our optimal low-rank tensor prior reliably reflects the
intrinsic structural correlation of the HSIs. Second, compared
with the single image based HL [78], our method additionally
utilizes the low-rank property in the spectrum which greatly
boosts to the restoration result. Third, the proposed method is
robust to various blur levels and blur cases.

In Fig. 6, we give the visual deblurring results of the
competing methods. We can observe that the OLRT could
well recover the detailed structures such as the hair and the
text in the zoomed regions, while the compared methods fail
to achieve this under all circumstance. For different blurs, our
OLRT consistently obtains very satisfactory deblurring results
which validates the robustness of our low-rank prior.

3) HSIs Inpainting: HSIs inpainting refers to the problem
of recovering a clean HSI from only partial observation of
its entries. We simulate three kinds of missing HSIs: i.e., the
random mask with 20% missing entries, the random mask
with 80% missing entries, and the 50% deadlines in the HSIs.
The quantitative results on CAVE dataset are reported in
Table IV. The FastHyIn could only work when the missing
mask is relative small, since the FastHyIn need to guarantee
some pixels intact for subspace estimation. Therefore, we only
report the case 20% missing entries for FastHyIn in Table IV.

https://owuchangyuo.github.io/
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(a) Original Image (b) Blurred Image (c) HL (d) FPD (e) SSTV (f) OLRT
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(PSNR, SSIM)

(PSNR, SSIM)

(PSNR, SSIM)

(55.09, 0.9991)

(45.69, 0.9928)

(52.18, 0.9977)

(28.20, 0.8843)

(25.37, 08116)

(22.54, 0.6551)

(32.40, 0.9387)

(29.13, 0.8595)

(26.18, 0.7866) (28.11, 0.8680)

(31.41, 0.8870)

(33.87, 0.9525) (32.80, 0.9424)

(29.48, 0.8676)

(27.13, 0.8253)

Figure 6. Simulated deblurring results under different blur level and blur case on CAVE dataset. The first row shows the light Gaussian blur on Toy (8*8,
Sigma = 3), the second row shows the heavy Gaussian blur on feather (17*17, Sigma = 7), the third row shows the Uniform blur on beads (s = 12). From
the left to right columns (a) Original image at band 700nm. (b) Blurred image, Deblurring results by (c) HL, (d) FPD, (e) SSTV, (f) OLRT.

Table III
QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER SEVERAL BLUR CASES ON CAVE DATASET.

Method
Gaussian Blur

(8*8, Sigma = 3)
Gaussian Blur

(17*17, Sigma = 7)
Uniform Blur

(s = 12)
PSNR SSIM ERGAS SAM PSNR SSIM ERGAS SAM PSNR SSIM ERGAS SAM

Blurred 32.61 0.9125 135.80 0.0736 28.69 0.8428 206.94 0.1020 29.62 0.8588 187.50 0.0924
HL 37.28 0.9460 83.88 0.0676 32.59 0.8819 137.14 0.1075 35.11 0.9163 104.82 0.0887

FPD 38.84 0.9617 68.48 0.0734 33.16 0.9114 125.11 0.1163 36.16 0.9467 89.65 0.0957
SSTV 37.61 0.9527 80.91 0.0658 33.08 0.8944 129.84 0.0989 35.73 0.9262 97.69 0.0844
OLRT 57.02 0.9984 8.44 0.0224 50.45 0.9937 18.26 0.0387 57.84 0.9985 7.64 0.0228

We can observe that under different missing conditions the
proposed OLRT significantly outperforms the state-of-the-art
HSIs inpainting methods by a large margin. It is interestingly
noted that for light missing condition (20% missing) the
spatially non-local based WNNM even works better than that
of the spatial-spectral total variational SSTV. This partially
validates that the non-local self-similarity is a key property
for both the single image and hyperspectral images.

The visual comparison results are shown in Fig. 7. We can
see that even for the 80% random missing entries, where
the information is totally overwhelmed by the dead pixels,
the proposed OLRT could still well recover clear edge and
texture information with the aid of the joint spatial and spectral
redundancy. Moreover, in HSIs, due to the malfunction of
the sensor, there always exist the deadlines due to its push-
broom imaging mechanism. We choose a remote sensing HSIs
PaviaU and test this problem as shown in the third row. We can
observe that OLRT could satisfactorily inpaint the deadlines
both in terms of the quantitative and qualitative assessment.

4) HSIs Destriping: In HSIs, there always exists line pat-
tern stripe noise, due to the push-broom mechanism of the
multi-detector imaging systems. To model the stripe noise,
we propose a tensor RPCA method for both the HSIs and
stripe component. In real HSIs scenes, the stripe and random
noise usually coexist which is the most common multiple
degenerations. Thus, we simulate the non-periodical stripe
noise along with the random noise. We choose the Washington
DC with the size 256*256*31. The quantitative results are
shown in Table V. We can observe that the OLRT obtains
the best results under different noise levels. With the increase
noise level, the advantages of proposed method over the
competing methods becomes bigger in term of both the spatial
and spectral assessment. That is to say, our result is robust to
the stripe noise compared with the competing methods, which
strongly support the effectiveness of our low-rank prior for
the stripe noise. In Fig. 8, we show the destriping results of a
remote sensing scene cuprite and Washington DC. It is easily
to be seen that the competing method fail to remove the stripe
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(a) Original (b) Missing (c) SSTVI (d) WNNM (f) OLRT(e) AWTC
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Figure 7. Simulated inpainting results under different missing level and case on CAVE and PaviaU dataset. The first row shows the light random mask on
watercolor (20% missing entries), the second row shows the heavy random mask on cloth (80% missing entries), the third row shows the deadlines on PaviaU
(50% missing entries). From the left to right columns (a) Original image at band 510nm. (b) Missing image, Inpainting results by (c) SSTVI, (d) WNNM,
(e) AWTC, (f) OLRT.

Table IV
QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER SEVERAL MISSING INFORMATION CASES ON CAVE DATASET.

Method
Random mask

(20% missing entries)
Random mask

(80% missing entries)
Deadline

(50% missing entries)
PSNR SSIM ERGAS SAM PSNR SSIM ERGAS SAM PSNR SSIM ERGAS SAM

Missing 23.24 0.6726 380.63 0.4412 17.22 0.3703 761.09 1.1261 19.28 0.5256 601.58 0.7847
WNNM 51.26 0.9974 18.37 0.0315 37.00 0.9599 88.29 0.0897 31.04 0.9705 194.76 0.0998
SSTVI 46.93 0.9947 27.64 0.0449 38.24 0.9674 73.94 0.0936 40.10 0.9706 68.24 0.0815
FastHyIn 49.62 0.9945 22.91 0.0638 – – – – – – – –
AWTC 50.65 0.9962 18.83 0.0401 36.12 0.9247 100.17 0.1474 41.27 0.9741 64.37 0.0944
OLRT 57.02 0.9992 9.15 0.0216 42.73 0.9899 46.25 0.0623 43.86 0.9940 61.85 0.0529

noise, while the proposed method could well remove both the
random and stripe noise simultaneously. It is worth noting that
even the information has been overwhelmed by the noises, the
proposed method could still recover structural edges clearly.

5) Test on Real HSIs: To demonstrate the robustness of our
method, we show in Fig. 9 various HSIs restoration results.
The first row shows the degraded HSIs and the second rows
present the restoration results by OLRT. From the left to
the right columns, we test the proposed methods on real
random noise, missing pixels, stripe noise and the mixed noise.
We can observe that the proposed method has consistently
obtained visually pleasure results and obtains clean image with
abundant edge structures.

C. Analysis

1) Analysis for Different Scenes and Bands: In Fig. 10,
from a macro viewpoint, we give a detailed comparison of all

HSIs scene in CAVE. In Fig. 11, from a micro viewpoint, we
give a detailed analysis about how each band is recovered
for different tasks. Here we have two observations. First,
the OLRT consistently obtains the best result for different
scenes and different tasks of each band, especially for the
deblurring and inpainting tasks. Second, compared with LLRT,
the OLRT could slightly better restore the HSIs, which verifies
the effectiveness of the proposed method.

2) Effectiveness of the OLRT: In this section, we further
validate the key observation of this work: the physical meaning
and dimension along each mode are markedly different and the
optimal low-rank tensor model is effective for HSIs restora-
tion. Specifically, we transfer the OLRT strategy accordingly
to the state-of-the-art work ITSReg [23] and NGM [34]. For
ITSReg [23], we remove the spatial mode low-rank constraint,
while for NGM [34] we additionally enforce the nonlocal-
subspace regularized spectral low-rank constraint. Note that,
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(PSNR, SSIM) (20.35, 0.5337) (26.37, 0.7859) (27.01, 0.8278) (26.12, 0.7654) (30.46, 0.9318)

(a) Original Image (e) ITSReg(c) BM4D (d) LRMR (f) OLRT

(PSNR, SSIM) (20.35, 0.1666) (25.99, 0.4057) (27.09, 0.4962) (27.78, 0.5279) (30.07, 0.7870)

(b) Noisy Image

Figure 8. Simulated destriping results on Washington DC and Curprite dataset. The simulated noise level is random noise λ2“20 and stripe noise intensity
= 20 and 50% region covered. (a) Original image. (b) Striping image, Destriping results by (c) BM4D, (d) LRMR, (e) ITSReg, (f) OLRT.

Table V
QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER SEVERAL STRIPE LEVELS ON WASHINGTON DC.

Method
Random Noise(λ2“20)

Stripe Noise(Intensity = 20, 50% region)
Random Noise(λ2“30)

Stripe Noise(Intensity = 30, 50% region)
Random Noise(λ2“30)

Stripe Noise(Intensity = 30, 80% region)
PSNR SSIM ERGAS SAM PSNR SSIM ERGAS SAM PSNR SSIM ERGAS SAM

Noisy 20.35 0.5347 324.83 0.4716 16.83 0.3626 487.39 0.6338 16.03 0.3252 534.05 0.6732
BM4D 26.37 0.7859 162.91 0.2443 22.93 0.6376 241.72 0.3479 20.08 0.4938 335.41 0.4693
LRMR 27.01 0.8278 151.98 0.2266 23.52 0.7030 226.58 0.3293 21.10 0.5858 298.53 0.4315
ITSReg 26.12 0.7655 167.51 0.2432 21.73 0.5688 277.64 0.3940 19.47 0.4495 359.98 0.4962
OLRT 30.46 0.9318 120.51 0.1708 28.87 0.8945 136.87 0.1885 28.59 0.8915 138.98 0.1917
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Figure 9. Real HSIs restoration results. The first to fourth column show the
denoising (AVIRIS), inpainting (AVIRIS band 74), destriping (CHRIS band
5), and mixed noise removal (Urban band 204) results, respectively.

we show the comparison results on the test dataset of the
released code with default noise level. Other noise levels
and datasets also follow this observation. In Fig. 12, the first
row shows the ITSReg denoinsing results with λ2“0.1 ˚ 255
on Balloons. The second row presents the NGM denoinsing
results with λ2“20 on Stuffed toy. We can observe that
the improved results with OLRT strategy (third column) are
better than that of the original results (second column) both
quantitative and qualitative, especially for the fine texture
and sharp edges. Such an interesting experiment have solidly

demonstrated the effectiveness of the proposed OLRT model.
3) Regularization Parameter Analysis: There are two main

regularization parameters ωj (j P t2, 3u) enforcing the low-
rank constraint along non-local mode and spectral mode,
respectively. Figure 13 shows the change of the PSNR and
SSIM values with the change of the parameters ω2 and ω3.
It is shown that the denoising results depends on the choice
of ω2, which controls the strength of the non-local low-rank
constraint. When the ω2 is relative higher, the performance is
consistently good; when ω2 tends to be small, the performance
decreases rapidly. This also validates the importance of the
non-local self-similarity in HSIs restoration. The PSNR/SSIM
value do not change means that the proposed method has
converged to a very good minimal solution. That is to say,
the choice of the regularization parameters are very robust in
a certain range. In our work, we empirically find that when
the ω2 ě ω3, the restoration performance is good. In practice,
we always set the ω2 “ 0.5, ω3 “ 0.5. It is worth noting that
the noise level λi is automatically changed according to the
noise level at different location and iteration. In this work, we
determine the noise level by calculating the residual between
each two iteration.

4) Maximum Missing Analysis: To demonstrate the effec-
tiveness of the proposed method, we perform the pressure test
by increasing the missing proportion, as shown in Fig. 14. For
the random mask, we add two heavy missing masks on cloth
with 90% missing entries and 99% missing entries, respec-
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Figure 10. The quantitative PSNR value analysis of all scenes in CAVE under noise level λ2“50. The horizontal axis denotes the number of HSIs scene,
and the vertical axis means the PSNR values.
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Figure 11. The spectral analysis of OLRT under different restoration tasks. The horizontal axis denotes the number of band and the vertical axis means the
PSNR values. (a) λ2“30 denoising, (b) Gaussian blur (17*17, Sigma = 7) deblurring, (c) 20% missing entries inpainting. The OLRT consistently obtains the
best result for different tasks of each band.

tively. For the deadlines, we add two heavy missing masks on
PaviaU with 90% missing entries and 95% missing entries,
respectively. We still use the same images in Fig. 7 for better
comparison. In such an extremely hard situation, the proposed
OLRT could still restore the image with sharp edge yet less
details. Note that, the width of most concentrated deadline
is almost 70 column in the last column. The performance of
OLRT is still visually acceptable with sharp edge. It is worth
noting that our restoration task is based on the hyperspectral
images. The amazing spatial visual appearance greatly benefits
from the spectral information. Imagining that for a pixel, along
the spectral axis, the pixel may be missing in some bands;
while for the other bands it may be still be intact. Thus, the
spectral correlation could provide redundant information for us
to reconstruct the missing pixels. In summary, the non-local
self-similarity plays a decisive role, and the additional spectral
high correlation further boosts the restoration result.

5) Number of the Bands: To validate the effectiveness of
the bands, we perform the experiment to analyze the relation-
ship between the restoration performance and number of the

bands. Here, we take the denoising as examples. For denoising,
we degrade the Flower in CAVE with λ2 “ 20, and gradually
increase the number of bands as the input. The quantitative
results are shown in Fig. 15. We have two observations. First,
we can observe that the PSNR and SSIM value (the larger, the
better) increase rapidly in the first 20 bands. Then, the PSNR
and SSIM (mean of each band) gradually converge to a stable
value. The same phenomenon has also been observed for the
SAM and ERGAS. That is to say, the increase number of bands
greatly benefits the OLRT for better restoration performance.
Second, it is worth noting that when the image band equals to
1, the OLRT degenerates to the single image based method,
and the OLRT could obtain PSNR = 38.34dB, SSIM = 0.9574,
SAM = 0.0069, ERGAS = 83.46 for image denoising, in which
the quantitative results are very similar to single image based
denoising method BM3D (refer to Fig. 4). It is noticeable,
although the restoration performance increase rapidly, the price
of the growth is the increasing running time.

6) Extension to the Color Image: Although OLRT is pro-
posed for HSIs which possess dozens or hundreds of contin-
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Figure 12. The effectiveness of OLRT strategy. We validate the OLRT model
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Figure 13. The regularization parameter robustness analysis. Change of the
PSNR (left) and SSIM (right) values versus the parameters ω2 and ω3.

uous bands, it can be extended to multispectral images with
fewer bands, such as RGB color image. Here, we compare the
proposed OLRT work with the SNN (LRTC) [83] and TRPCA
[84] for color image processing. We choose the color image
denoising task for fair comparison. We download the source
code from the homepage of the author where the parameters
are fine-tuned to achieve the best performance. The color
image denoising results of image castle in BSD dataset are
shown in Fig. 16. We can observe that the LRTC and TRPCA
have suppressed the noise at the cost of blurry edges, while the
proposed OLRT obtains smoother image with clearer texture.
Overall, the OLRT has obtained better performance in terms
of noise suppression and detail preserving.

7) Convergence Analysis: The convergence of the ADMM
has been extensively discussed [85], [86]. In our work, both
the two terms in Eq. (5) are always strongly convex and
have Lipschitz continuous gradient. In such a situation, the
convergence property of the ADMM can be well guaranteed
with proper penalty parameters [86]. We also provide an
empirical convergence analysis by taking the HSIs denoising
as example. Figure 17 illustrates its evolutional curve of func-
tional energy of Eq. (5) versus the iterations. We can observe
that the functional energy curve monotonically decreases and
the PSNR value curve monotonically increases, which verify
the convergence property in practice.
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Figure 14. Robustness of the OLRT inpainting for extreme large missing
proportion. Both the random mask and deadlines are tested.
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Figure 15. Influence of the numbers of bands. We show the changing curve
of PSNR, SSIM, SAM, and ERGAS versus the number of the bands.

VI. CONCLUSION

The low-rank based methods have been widely used in HSIs
restoration tasks. However, it is still hard to tell which property
is most beneficial for HSIs restoration, not to say how to model
these properties in a more reasonable manner. In this work,
we try to figure out these fundamental problems by giving a
detailed analysis of the structure correlations in HSIs and an
optimal combination for better restoration. Consequently, we
propose an optimal low-rank tensor OLRT prior in which both
the non-local and spectral low-rank property are taken into

(a) Original (b) Noisy (c) LRTC (d) TRPCA (e) OLRT

Figure 16. Color image denoising results under noise level λ2 “ 20. (a)
original, (b) noisy, Denoising results by (c) LRTC, (d) TRPCA, (e) OLRT.
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Figure 17. The empirical convergence curve of HSIs denoising result. (a)
Functional energy curve, (b) PSNR value curve.

consideration simultaneously. Moreover, we further excavate
the low-rank property in the sparse stripe error and extend
the OLRT to the RPCA model for HSIs stripe removal. The
proposed method has been extensively tested on extensive
simulated and real experiment such as HSI denoising, destrip-
ing, deblurring, inpainting, and it consistently outperformed
the competing state-of-the-art approaches in both quantitative
assessments and visual appearance. The OLRT can also be
well extended to three bands color image restoration. In the
future, we would like to extend the proposed OLRT to other
HSIs tasks such as reconstruction and super-resolution.
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