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Figure 1. The proposed method can remove both the real-world rain streaks and veiling effect meanwhile well preserve image structures in
an unsupervised manner. More real results and comparisons with the state-of-the-arts can be found in the supplementary.

Abstract
Image deraining is a typical low-level image restoration task,
which aims at decomposing the rainy image into two distin-
guishable layers: clean image layer and rain layer. Most of
the existing learning-based deraining methods are supervis-
edly trained on synthetic rainy-clean pairs. The domain gap
between the synthetic and real rains makes them less gener-
alized to different real rainy scenes. Moreover, the existing
methods mainly utilize the property of the two layers inde-
pendently, while few of them have considered the mutually
exclusive relationship between the two layers. In this work,
we propose a novel non-local contrastive learning (NLCL)
method for unsupervised image deraining. Consequently, we
not only utilize the intrinsic self-similarity property within
samples, but also the mutually exclusive property between
the two layers, so as to better differ the rain layer from the
clean image. Specifically, the non-local self-similarity im-
age layer patches as the positives are pulled together and
similar rain layer patches as the negatives are pushed away.
Thus the similar positive/negative samples that are close
in the original space benefit us to enrich more discrimina-
tive representation. Apart from the self-similarity sampling
strategy, we analyze how to choose an appropriate feature
encoder in NLCL. Extensive experiments on different real
rainy datasets demonstrate that the proposed method obtains

state-of-the-art performance in real deraining.

1. Introduction
The existing high-level computer vision tasks such as

image segmentation [6], and object detection [34] have
achieved significant progress in recent years. Unfortunately,
their performance would suffer from degradation under the
rainy weather [1, 22, 29]. To alleviate the influence of the
rain, numerous full-supervised deraining methods have been
proposed [11,54,59]. Although they can achieve good results
on simulated rainy image, they cannot well generalize to the
real rain because of the domain gap between the simplified
synthetic rain and complex real rain [56]. The goal of this
work is to remove the real rain in an unsupervised manner.

To handle the real-world complex rainy images, the
optimization-based methods are firstly proposed with hand-
crafted priors such as the sparse coding [36], low-rank [4]
and Gaussian mixture model [31]. However, these hand-
crafted priors are of limited representation ability, especially
for highly complex and varied rainy scenes. To rectify this
weakness, the learning-based CNN methods [11, 28, 30, 54]
have made great progresses. The key idea of these super-
vised learning methods tries the best to simulate the rain

*Corresponding author

ar
X

iv
:2

20
3.

11
50

9v
1 

 [
cs

.C
V

] 
 2

2 
M

ar
 2

02
2



as real as possible with sophisticated models, such as the
additive model [25], screen blend model [36], heavy rain
model [54], and comprehensive rain model [19], to name a
few. Unfortunately, there still exist gap between these syn-
thetic rain models and real rain degradation, since the real
rainy atmosphere is usually a high-order nonlinear system.

Furthermore, the semi-supervised deraining methods have
been proposed to effectively improve the robustness for real
rains [20, 35, 48, 49, 55, 56], where they employ the simu-
lated labels for good initialization and unlabeled real rains
for generalization. Their performances still depend on the
distribution gap between the simulated and real rainy images
to some extent. Once the distributions are of large distance,
these semi-supervised deraining results would be less sat-
isfactory. Very recently, the unsupervised methods have
raised more attentions for real rain removal, mainly includ-
ing the CycleGAN-based unpaired image translation meth-
ods [23,50,60] and the optimization-model driven deep prior
network [58]. However, the previous methods including the
unsupervised ones mainly pay attention to the property of
the image or rain layer independently, yet seldom consider
the mutually exclusive relationship between the two layers.

To overcome these problems, we formulate the image
deraining into a contrastive learning framework [7, 18] from
an unsupervised perspective. The core idea of contrastive
learning is that the representation of similar samples should
be pulled close together, while that of dissimilar samples
should be pushed far away in the embedding space [16, 52].
Figure 2 illustrates the main idea of proposed method. The
image deraining is formulated as an image decomposition
task, in which the clean image patches are regarded as the
positives while the rain layer patches as the negatives. Thus,
we not only take advantage of the properties of both image
and rain layers, but also model the mutually exclusive re-
lationship between the two layers for better decomposition.
On the other hand, the proposed method does not require
the clean supervision, which makes it generalize well for the
real-world rainy images.

The key factor of contrastive learning is how to construct
different views for both the positive and negative samples.
The main stream is to augment a single instance with differ-
ent transformations as the positive samples so as to learn the
invariant representations [7]. However, these instance-level
hand-crafted augmentations are not adequate to cover vari-
ous situations. In this work, we provide a new perspective via
the patch-level self-similarity within a single image. While
non-local self-similarity [3] has been extensively studied in
the literature, this intrinsic property for capturing the cross-
patch relation in a single image with contrastive learning has
barely been explored for visual representation learning.

To the best of our knowledge, we are the first to incor-
porate non-local self-similarity into contrastive learning for
positive/negative sampling. The advantage of the proposed
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Figure 2. Most previous methods model the property of the image
layer and rain layer independently in a supervised manner. In this
work, we go further by considering the mutually exclusive relation-
ship between the two layers, and propose an unsupervised non-local
contrastive learning method to learn mutually exclusive relationship
by pushing away the image positives and rain negatives. Moreover,
the non-local self-similarity has been exploited to improve the
positive/negative sampling with discriminative representation.

non-local sampling is twofold. First, the non-local self-
similarity sampling strategy would naturally guarantee more
compact clusters for positives and negatives respectively,
which would benefit us to differ the positives from negatives.
Second, these positive non-local patches are the samples
searched from real images with diverse variable information,
not manually generated fake samples, which would provide
more faithful information for representation. Note that, the
non-local strategy is not only applicable for the positive sam-
ples, but also beneficial to the negative samples. Overall, our
contributions can be summarized as follow:

• We propose a non-local contrastive learning method
(NLCL) for unsupervised image deraining. Compared
with previous deraining methods, we not only exploit the
specific property of the image and rain layers, but also
model the contrastive relationship between them for better
decoupling the rain layer from the clean image.

• We connect the contrastive learning with the non-local
self-similarity. The non-local patch sampling strategy nat-
urally endows the positive/negative samples with more
compact and discriminative representation for better de-
composition. In addition, we provide an guidance of how
to design a good encoder for better embedding in NLCL.

• We conduct extensive experiments on both synthetic and
real-world datasets, and show that NLCL outperforms fa-
vorably state-of-the-art methods on real image deraining.

2. Related Work
Single Image Deraining. Here, we mainly focus on the
learning-based deraining methods. Most of the existing
methods are full-supervised which require a large num-
ber of paired rainy and clean images as training samples
[5,12,13,19,28,30,41,47,54,57,62]. Fu et al. [12] first intro-
duced the end-to-end residual CNN for rain streaks removal.
Latter, the multi-stage [54], multi-scale [22], density [59],



and attention [30] have been widely utilized for better rep-
resentation. Unfortunately, the domain gap between the
complex real rain and the simplified synthetic rain would
limit their generalization in real scenes. The semi-supervised
deraining models [20,48,49,55,56] could alleviate this issue
to some extent. For example, Wei et al. [48] first proposed
a semi-supervised transfer learning framework via network
structure sharing for real image deraining. Recently, the un-
supervised deraining methods have emerged [23, 50, 58, 60].
Yu et al. [58] connected the model-driven and data-driven
methods via an unsupervised learning framework. In this
work, we propose a novel contrastive learning framework for
unsupervised deraining. Compared with previous methods,
the NLCL could further take mutual exclusive relationship
between image and rain layers into consideration.
Contrastive Learning. Contrastive learning (CL) has
achieved promising results in unsupervised representation
learning [7–9, 18, 39, 52]. The main idea is to push the fea-
tures of unrelated data (as negatives) and pull the related
data (as positives), so as to learn the representations which
are discriminative to the negatives and invariant between the
positives. CL can be effectively applied by appropriately
defining the positives and negatives in terms of the tasks,
including the multi-views [42, 43], temporal coherence in
video sequence [17], augmented transformation [7, 18], to
name a few. Recently, researches have applied the CL to
low-level applications [33, 40, 51]. Wu et al. [51] pulled the
restored image closer to ground truth (GT) and pushed them
far away from the hazy image in the representation space.

Our NLCL is significantly different from [51] in three
aspects. First, our method is completely unsupervised which
does not need the GT. Second, we take the estimated image
and rain layers as the positive and negative, respectively.
Such an explicit disentanglement between the two layers
would better facilitate us to decouple the rain from the clean
image. Third, [51] employs a classical instance image-level
samples for contrast, while we have explored the intrinsic
similarity between the patches within a single image. The
self-similarity within the positive or negative would further
boost more compact and structural feature space.
Non-local Self-similarity. The self-similarity serves as a
powerful image prior model, which has been verified in vari-
ous image restoration techniques, including filtering meth-
ods [3, 10], sparse optimization models [15, 37], and deep
neural networks [2, 32, 46]. The nonlocal prior reveals a
general image property that the similar small patches tend
to recurrently appeared within a single image. This generic
property could provide group sparsity of the image with
structural representation. Beneficial from capturing the cor-
relation among the self-similarity patches, these non-local
based methods have achieved the state-of-the-art perfor-
mances at the time, such as the BM3D in denoising [10],
WNNM in restoration [15], and kernelGAN in blind super-

resolution [2]. In this work, we demonstrate how this intrin-
sic property benefits the contrastive learning in terms of the
positive/negative sampling, and boosts the performance in
low-level image deraining task.

3. Non-local Contrastive Learning
3.1. Overview of the Framework

Given a rainy image O, our goal is to decompose the rainy
image into a clean background layer B and a rain layer R.
The degradation procedure can be formulated as:

O = B + R. (1)
Note that, although we follow this simple decomposition
framework [31], this does not mean the proposed method
only handles the rain streak. The proposed method can
well restore the heavy rain with haze or veil artifacts. Thus,
the image deraining task can be formulated as an ill-posed
inverse problem with following optimization function:
Ldecom = ||B + R− O||2F + δPb(B) + λPr(R), (2)

where the first term is self-consistent loss, namely the data
fidelity term, Pb and Pr denote the prior knowledge for the
clean image and rain streaks, respectively. Thanks to the
sparsity of the rain streaks in space, in this work, we regu-
larize the rain layer with the L1 constraint: Pr(R) = ||R||1
favoring the rain streaks with large discontinuities. On the
other hand, for the clean images, we employ the adversarial
loss [14] to learn the distribution mapping differing the rainy
image from clean image:

Pb(B) = EB [logD(B)] + EO [log(1−D(GB(O)))] , (3)

where D is the discriminator, and GB is the generator
for the clean image. The corresponding network of the
decomposition-based architecture is shown in Fig. 3(a),
which consists of two branches to restore the background
(GB) and extract the rain (GR).

Most of the existing restoration methods follow the de-
composition framework in Eq. (2) with different hand-
crafted or learned priors, where they only consider the clean
image or rain layer separately. That is to say, the Eq. (2)
mainly focuses on modelling of the statistical property of
the signal itself. However, it has neglected the relationship
between clean image B, rain layers R, and observed im-
age O. In this work, we argue the relationship among these
components can further help to distinguish them from each
other. We introduce the contrastive learning to model the
relationship between different components. Specifically, we
evolve the relation LLayerCon between the clean image B
and rain layer R, also relation LLocCon between clean image
B and observed image O. Thus, the full objective function
including the decomposition constraint and contrastive loss
is formulated as:
Loverall = Ldecom+µLLayerCon(B,R)+σLLocCon(B,O).

(4)
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Figure 3. Overview of architecture of the proposed method. (a) The NLCL consists of two sub-networks to extract the background and the
rain layers respectively with two additional contrastive constraints. (b) The layer contrastive between the clean image and rain streaks with
the non-local sampling for both positives and negatives. (c) The location contrastive between the clean image and rainy image with the
reverse non-local sampling for negatives.

Layer Contrastive: First, the clean image B and the rain
layer R are vastly different, in which the rain streaks are
simple and directional line-pattern, while the natural images
are complex yet meaningful structures such as edges and
textures. The dissimilarity between the B and R, as two
different categories, can be well modelled by CL as negative
pairs. And it is very reasonable to take the patches in the
same image as the positive samples. The important sampling
strategy and encoder in CL will be discussed in next subsec-
tion. Referring to the rain patches pRi

as negatives, while the
background patches as the positives pBi

, the contrastive loss
between the two layers B and R can be formulated:

LLayerCon = − 1

NB

NB∑
k=1

NB∑
i=1

exp(f Bi
· f Bk

/τ)∑NR

j=1 exp(f Bi
· f Rj

/τ)

− 1

NR

NR∑
m=1

NR∑
j=1

exp(f Rj
· f Rm

/τ)∑NB

i=1 exp(f Rj
· f Bi

/τ)
,

(5)

where f Bi
= ED(pBi

), f Rj
= ED(pRj

), τ denotes the scale
temperature parameter [7]. ED is the encoder of contrastive
network. The features f Bk

are extracted from the non-local
patches pBk

of pBi
, while the f Rm

are extracted from the non-
local patches pRm

of pRj
. NB and NR denote the sample

numbers of positives and negatives. The layer contrastive
could facilitate us to better push the image layer away from
rain layer, and pull each layer further to different clusters.
Location Contrastive: Second, we can observe that the
clean image B and the observed image O are visually close
to each other, since the rain streaks R are much simpler than
B. The similarity between patches of the same location in
B and O, as the same view, can be well modelled as the
positive samples. Consequently, we set the patches with
different locations as the negative samples. Note that, here

for location contrastive, there should be only one positive
sample, since the location correspondence is exactly one-
to-one. The encoder of image generator EGB is utilized
to extract the patch features, denoted as vOi = EGB(pOi

),
and vBi = EGB(pBi

). Thus, the location contrastive loss is
formulated as:

LLocCon =
∑N
i=1

exp(vOi ·vBi/τ)

exp(vOi ·vBi/τ)+
∑N

j=1 exp(vOj ·vBi/τ)
, (6)

where N is the negative sample numbers. The location
contrastive constrains the restored background patches pBi

at location i to be related (positive) with the corresponding
input patches pOi

in comparison to other random patches pOj
,

so as to retain the image content.

3.2. Non-local Sampling Strategy

In contrastive learning, the negatives are the samples
which should be discriminated by the learned representa-
tions, while the positives are highly related and possess
the invariance in the learned representations. The previ-
ous methods usually use the augmentations to construct the
single instance positives and randomly sampling as the neg-
atives [7]. Note that, the self-similarity is a generic and
powerful prior knowledge. In this work, we introduce the
non-local self-similarity to automatically select both positive
and negative samples within a single image. We employ the
block matching [10] with L2 Euclidian distance to measure
the dissimilarity/similarity in image space:

Dist(pi, piR) = ||pi − piΩ ||
2, (7)

where pi is the query patch, piΩ are the searched patches
in the support set Ω. We take the top-k smallest Dist() as
the similar patches, while the top-k largest Dist() can be
regarded as the dissimilar patches. On one hand, the non-
local sampling with similar structures would greatly ease the
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Figure 4. Effectiveness of the non-local sampling strategy. (a)
Example of the randomly sampled positives with low similarity in
comparison with the non-local self-similar sampled positives. (b)
The Euclidean distances of positives decrease rapidly to a relative
low level by non-local sampling strategy when compared with
the random strategy, indicating the self-similarities are gradually
learned and the patches are more relevant in the deraining procedure.
(c) The similar patches guide each other to gradually restore the
clean image and remove the randomly distributed rains.

learning difficulty. On the other hand, the small perturbation
within the similar samples would further improve the diver-
sity. Moreover, the patches cropped from the image itself
would provide more reliable representation learning. The
non-local sampling strategy can be applied for sampling the
positive and negative. Here we briefly describe how we use
the non-local sampling in very flexible ways.
Non-local Sampling in Layer Contrastive. In layer con-
trastive, the clean image and rain streaks can be regarded as
two distinct categories where they have intra-class similarity
and inter-class dissimilarity. Our principle is that the pos-
itive samples (clean image patches in B) should be pulled
together as much as possible, so is the negative samples
(rain streak patches in R) which can also be pulled together.
That is to say, we enforce the non-local sampling on both
the positive and negative samples. Compared with single
positive instance, the multiple non-local positive samples
would benefit us to improve the feature representation. The
recent research has also shown that positives from multi-
ple instances could improve the representations if sampled
appropriately (with supervised labels [26] or multiple modal-
ities [17]). Moreover, compared with the random negative
samples, the non-local sampling could additionally model
the relationship within the samples.

To illustrate this, Figure 4 shows the superiority of the
non-local sampling on positives. Figure 4(a) shows an exam-
ple of random and non-local sampled patches. The non-local
patches possess the structure self-similarities in comparison
with the random sampled ones. During training, we con-
tinually re-sample the non-local positives and calculate the
similarity by Euclidean distance. Compared with random
sampling or neighbour sampling which samples the surround-
ing patch neighbours, the distances of non-local positives de-
crease rapidly, and converge at a relatively low level, which
indicates the self-similarities are gradually learned and the
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Figure 5. Effectiveness of the discriminator encoder. The first
row shows the features extracted from image encoder. Although
the extracted features in two different images are clear, the image
generator has nearly no response to the rain streaks. The second
row shows the features extracted from the discriminator encoder.
The extracted features in two images and rain streaks are both clear
and discriminative. This strongly supports the effectiveness of the
discriminator serving as the encoder for the image and rain layer.

patches are more relevant in the restoration procedure [Fig.
4(b)]. Therefore, by maximizing the correlations of positives,
the self-similar patches guide each other to gradually restore
the clean image and remove the rain streaks. The progressive
deraining results are shown in Fig. 4(c).
Non-local Sampling in Location Contrastive. The ob-
served image O and clean image B are very similar to each.
In location contrastive, the goal is to retain the image content
and remove the rain streaks in observed image, which is
exactly a image-to-image translation task. Thus, we follow
the CUT [40] by setting the patches of the same location in
B and O as the positive samples with a large batch size. The
previous methods including CUT randomly select the differ-
ent patches as the negative. However, it is more reasonable
that the more dissimilar from the positive sample, the bet-
ter the negative sample is. This motivates us to still use the
non-local sampling strategy to construct the negative patches.
Instead of calculating the nearest top-k samples, we choose
the farthest top-k samples (the largest distance) which means
they are mostly different from the target positive. We name
this negative sampling as the reverse non-local sampling.
3.3. Feature Encoder

In contrastive learning, the feature encoder is to map the
inputs to the embedding low-dimensional feature representa-
tion space that facilitates the measurement of the distances
between positive and negative samples. It has been recog-
nized that for different CL tasks, the choice of the encoder
would vastly influence the final performance [27]. In this
work, we also demonstrate that the encoder is indeed tasks
dependent for low-level restoration tasks, and explore dif-
ferent encoders for both the layer and location contrastive
constraints intuitively and experimentally.

As for the layer contrastive, the goal is to differ the rain
streaks from the clean image, which has been analyzed that
this is analog to a classification problem. That is to say, the
encoder of the layer contrastive should extract the high-level
semantic about the category information. The discriminator
is in line with the layer contrastive encoder, which can differ
the image from non-image component including the rain



Table 1. Quantitative comparisons with SOTA unsupervised meth-
ods on synthetic and real datasets.

Methods
RainCityscapes SPA

PSNR SSIM NIQE PSNR SSIM NIQE
DSC 24.91 0.7603 6.17 33.71 0.9127 9.82
DIP 22.45 0.6936 7.86 30.36 0.8422 9.97

CycleGAN 24.86 0.7906 3.68 33.54 0.9127 6.67
UDGNet 25.16 0.8749 5.31 29.67 0.9299 9.50

CUT 25.21 0.8225 4.08 32.97 0.9434 9.60
NLCL 26.46 0.8666 3.67 33.82 0.9468 9.55

streaks. As for the location contrastive, the clean image and
the observed rainy image are very similar to each other, in
which the clean image is the dominant component in rainy
image. In other words, the encoder of the location contrastive
should well extract the image features. The image generator
can satisfactorily achieve this goal.

To verify our hypothesis, Figure 5 visualizes the embed-
ded features map encoded by different encoders: image
generator and discriminator. The first row shows the features
extracted from image encoder, and the second row shows
the features extracted from discriminator encoder. We select
two different clean images and two different rain streaks
as the example. We can observe that the image generator
could effectively extract the image structures, while it cannot
extract any informative information from the rain streaks.
On the contrary, the line patterned rain streaks and the image
structure can be clearly observed in the features extracted
by the discriminator encoder. The discriminator focuses on
the distinguishable features of image and non-image factors
to perform the classification task, which matches the layer
contrastive learning task better.

4. Experiments
4.1. Implementation Details

We utilize the same ResNet architectures [24] for both
the background extraction and rain extraction. Please refer
to the supplementary for details. PatchGAN [21] is em-
ployed for the discriminator. We first calculate the top-k
non-local patches in image space, then obtain the multilayer
features [40] from the encoder, and finally embed the non-
local features through a two-layer MLP with 256 units. The
sampling numberN,NB , andNR are set as 256, 8, 256. The
encoder updating follows the setting of MoCo [18], using
momentum value 0.99 and temperature 0.77. The balance
weights for each loss λ, δ, µ, σ are set as 0.1, 1, 1, 1. During
the training, the original images are randomly cropped into
256 × 256 as input without any augmentation. We adopt
the Adam optimizer and train the network with learning rate
0.0001, and batch size 4 on four RTX 2080TI GPUs.

4.2. Datasets and Experimental Settings

We conduct the experiments on both synthetic dataset
RainCityscapes [19] and real dataset SPA [45]. To simulated

the real situation, we split the RainCityscapes with 1400 for
training and 175 for testing. Note that we have no access
to the ground truth and can only learn in an unsupervised
manner. For the real dataset, we obtain 2000 rainy images
from SPA for training and 200 rainy images for testing. For
a fair comparison, we mainly select the unsupervised meth-
ods, including the optimization-based DSC [36], CNN-based
DIP [44], GAN-based CycleGAN [61], contrastive learning-
based CUT [40], and optimization-driven deep CNN [58].
Furthermore, we compare with state-of-the-art supervised
JORDER-E [53] on the real rainy images. We employ the
full-reference PSNR and SSIM to evaluate the deraining per-
formance, and also the no-reference natural image quality
evaluator (NIQE) [38] for comprehensive evaluation.

4.3. Comparisons with State-of-the-arts

In Table 1, we report the quantitative results on Cityscape
and SPA. These datasets mainly contains the rain streaks
with different visual appearances without the veiling in heavy
rainy images. The quantitative results of NLCL mostly out-
perform state-of-the-art methods, which verifies the robust-
ness of the proposed NLCL. Note that UDGNet mainly takes
advantage of the directionality of the rain streaks, which is
very suitable for the directional rain streaks in Cityscape. Cy-
cleGAN is an image generation method aiming at visually
natural appearance, which matches the goal of NIQE, but
cannot well preserve the original image content in terms of
the relatively low PSNR. We do admit that our NLCL is not
designed for the quantitative index on rain streaks. Instead,
our philosophy is to unsupervisedly handle the real rains. To
validate this, in Fig. 6, we compare with the state-of-the-art
on real-world rainy images, which contains both the rain
streak and veiling. NLCL consistently achieves more natural
and better visual results, which not only remove the rain
streaks but also the veiling artifacts. The results strongly
support the effectiveness of the CL and non-local sampling
for better distinguishing real rain from image texture.

4.4. Ablation Study

The Effectiveness of the Non-local Sampling Strategy. In
Table 2, we compare the different sampling strategies for
both the positives and negatives, including the random sam-
pling, neighbour sampling (8 nearest neighbour patches),
and the non-local sampling. These experiments are all per-
formed on the layer contrastive. Compared with the random
sampling, the non-local sampling for both the positive and
negative could obviously improve the restoration results.
That is to say, the non-local sampling is favorable to learn
the image and rain streaks similarity, thus indeed reduces
the variance within the positives and negatives, and at the
same time enlarge the discrepancy between them. The neigh-
bour sampling could slightly improve the results, while the
non-local sampling still obtains the best performance.
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Figure 6. Visual comparisons in real rainy scenes including both rain streaks and heavy haze. We suggest to view the zoomed results on PC.

Table 2. Ablation on different sampling strategies.
Positive Negative PSNR SSIM
Random Random 25.83 0.8471

Neighbour Random 26.03 0.8491
Neighbour Neighbour 25.97 0.8477
Non-local Random 26.18 0.8489
Random Non-local 26.16 0.8531

Non-local Non-local 26.46 0.8666

Table 3. The choice of different feature encoders.
Encoder PSNR SSIM NIQE

Image Generator 24.86 0.8046 3.83
Image-Rain Generator 24.12 0.8023 3.95

Discriminator 26.46 0.8666 3.67

The Choice of Different Feature Encoders. The choice
of the encoder for latent feature space is very important.
In Table 3, we test different encoders for layer contrastive
feature embedding. First, we take the image generator as the
feature encoder for both the image and rain layers. Second,
we utilize the image generator and rain generator as the
feature encoder for the image and rain layer, respectively.
Third, we employ the discriminator as the feature encoder for
both the image and rain layers. The discriminator encoder
has achieved the best result, which verifies the discriminator
is suitable to distinguish the image from rain patches.
The Influence of the Non-local Sampling Number. We
show how the sampling numbers affect the derain result
in Table 4. The PSNR increases when the positive sizes
grow to an appropriate number, and then decrease since the

Table 4. The analysis of optimal sampling number.

Pos
Neg

64 128 256 512

4 23.21 26.11 26.19 26.30
8 24.55 26.30 26.46 26.42

16 24.54 25.96 26.02 26.11
32 23.49 25.02 25.40 25.37

Table 5. Different strategy ablations on location contrast.
Ablations PSNR SSIM NIQE

Random Sampling 26.33 0.8617 3.81
Discriminator Encoder 24.71 0.8476 3.94

Sample Number 64 25.03 0.8646 3.88
Sample Number 128 26.14 0.8604 3.75
Sample Number 512 25.98 0.8594 3.70

NLCL 26.46 0.8666 3.67

excessive positives are somehow dissimilar. 8 positives and
256 negatives obtain the best performance. The reason is that
most of the rain have the similar line patterns, thus more non-
local similar patches can be found to boost the learning than
complex image patches. Moreover, the sampling number
is not the larger the better, since enforcing the dissimilar
patches to be similar may violate the similar assumption.
The Strategies of Location Contrast. We further study the
strategies of location contrast in Table 5, which shows the
improvement from reverse non-local sampling. Moreover,
the image generator encoder is much better than discrimina-
tor to preserve the image content in location contrastive. 256
is an appropriate number for the sampling number.
The Effectiveness of Each Loss. In Table 6, we show how



Table 6. Effectiveness of each loss in NLCL.
Model PSNR SSIM NIQE

w/o Ladv 21.55 0.7984 5.03
w/o L1 26.33 0.8566 3.74

w/o LLocCon 25.20 0.8469 3.85
w/o LLayerCon 24.12 0.8402 3.98

NLCL 26.46 0.8666 3.67

Table 7. The model size and inference time under image 256 ∗ 256.
Method DSC JORDER-E CycleGAN UDGNet CUT NLCL

Size(MB) – 16.7 45.6 5.7 45.6 2.6
Time(s) 33.95 0.128 0.0144 0.0170 0.0135 0.0098

Image w/  L
LayerCon

 Image w/o L
LayerCon

 

Rain w/  L
LayerCon

 Rain w/o L
LayerCon

 

(a) Image (b) Visualization (c) Rain

w/o w/ w/ w/o

Figure 7. The effectiveness of the layer contrastive for better image
and rain streaks decomposition. (a) and (c) show the decoupled rain
and image patches w/ and w/o the layer contrastive. (b) visualizes
the low-dimensional distributions w/ and w/o the layer contrastive.

each loss contributes to the final result. The LLocCon and
LLayerCon aim to learn the correlations between the rainy-
clean images, and the rain-image layers, which could greatly
improve the deraining results. The self-consistency and
adversarial loss are the baseline of our model. L1 sparse loss
could slightly improve the performance.

4.5. Analysis and Discussion

Effectiveness of Contrastive Learning. In Fig. 7(b), we
perform the tSNE to visualize the distribution of the decom-
posed image and rain layer w/ and w/o contrastive constraint.
Without the layer contrastive, the distribution of the green
rhombus (image) and the pink pentacle (rain streaks) are
divergent. Moreover, they are mixed with each other which
means they are still indistinguishable. On the contrary, with
the layer contrastive, the distribution of the red rhombus
(image) and the dark blur pentacle (rain streaks) are focused
and distinguishable. In Fig. 7(a) and (c), with contrastive
loss, the image and rain layers are better decoupled.
Visualization of Self-similarity Patches. We visualize the
top 5 non-local positives and negatives of both light and
heavy rain conditions in Fig. 8. The extremely heavy
rain would unavoidably increase the difficulty in non-local
searching. The two-stage searching framework could be
used, where the coarse clearer results are obtained before
we search the non-local patches in the intermediated results.
The positives and negatives are similar to that of the query
key. The similarity is real and reliable with slight difference,
instead of synthesis or fixed transformations. This intrinsic
property facilitates us to learn discrimination representation.
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Figure 8. The visualization of the Top5 non-local searched patches.

Rain UDGNet UDGNet+CL

Figure 9. The benefits of the NLCL when applied to UDGNet.

The Benefit of the NLCL Strategy for Other Method.
Our NLCL is a general prior which can be naturally embed-
ded into the existing methods for better decomposition. Here,
we take the unsupervised deraining method UDGNet [58] as
example. As shown in Fig. 9, although UDGNet could well
remove the rain streaks without NLCL, the image structures
have been unexpectedly removed along with rain. The result
of UDGNet + NLCL is much better, such as the text.
Model Size and Running Time. In inference phase, only
the image generator is employed, making NLCL very fast
and small, as shown in Table 7. But in training phase, the
additional nonlocal self-similarity searching is somewhat
time-consuming. Normally, we take one day and a half for
training 1400 images, which is the main limitation of NLCL.
Speeding up the training time is one of our future work.

5. Conclusion
In this paper, we propose a novel non-local contrastive

learning method, which explores the powerful self-similarity
property within the image. Our method is totally unsuper-
vised which can automatically decouple the image from the
rain artifacts. We show that our non-local sampling strategy
can be used to learn meaningful representations for both
positives and negatives. Especially, the proposed non-local
sampling strategy enriches the faithful, diverse and structural
representation for both negatives and positives. Moreover,
we provide an guidance of how to select an appropriate en-
coder for better feature embedding. Extensive experiments
demonstrate the effectiveness of the proposed method.
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