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Remote Sensing Image Stripe Noise Removal:
From Image Decomposition Perspective

Yi Chang, Student Member, IEEE, Luxin Yan, Member, IEEE, Tao Wu, and Sheng Zhong

Abstract—Stripe noise removal (destriping) is a fundamental
problem in remote sensing image processing that holds significant
practical importance for subsequent applications. These varia-
tional destriping methods have obtained impressive results and
attracted widely studied research interests. However, most of them
are dedicated to estimate the clear image from the striped one,
paying much attention to the image itself, while ignoring the struc-
tural characteristic of stripe, which would easily cause damages to
the image structure and leave residual stripes in image recovery.
In this paper, we treat the image and stripe components equally
and convert the image destriping task as an image decomposition
problem naturally. We first give a detailed analysis about the
structural characteristic of stripes and the prior knowledge about
the remote sensing images. Then, incorporating them, we propose
a low-rank-based single-image decomposition model (LRSID) to
separate the original image from the stripe component perfectly.
This low-rank constraint for the stripe perfectly matches the fact
that only parts of data vectors are corrupted but the others are not.
Moreover, we further utilize the spectral information of the remote
sensing images, and we extend our 2-D image decomposition
method to the 3-D case. Extensive experiments on both simulated
and real data have been carried out to validate the effectiveness
and efficiency of the proposed algorithms.

Index Terms—Decomposition, image destriping, low rank, re-
motely sensed image, total variational (TV).

I. INTRODUCTION

R EMOTE sensing imagery has played an important role in
various applications, including earth climate, agriculture,

and military [1]–[3]. However, there in practice always exist
various kinds of stripe noise in different remote sensing imag-
ing systems, including push-broom [4] and cross-track imaging
devices [5], mainly due to the differences in the response of
detectors, calibration error, and so on. The stripes in remote
sensing images not only sharply degrade the image quality in
the visual effect but also risk their suitability for subsequent
processing, e.g., image unmixing [6] and classification [7]. The
goal of our work is to remove the stripes and improve image
quality before the subsequent interpretation.

In the past decades, the stripe removal problem has attracted
many research interests, and the destriping methods can be
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Fig. 1. Key properties of destriping algorithms.

categorized from different viewpoints, as shown in Fig. 1. From
the viewpoints of methodology, available destriping methods
can be mainly classified into three categories. The filtering-
based methods are widely used due to their simplicity [8]–[10].
One limitation of this kind of method is the poor destriping
capacity since they hold the assumption that stripes are periodic
and can be identified from the power spectrum. The image
structures with the same frequencies as stripes will also be
affected along the filtering procedure. Because the stripes only
affect partial columns or rows in images and leave the others
intact, the second category methods utilize the statistical prop-
erty of digital numbers of the fine detectors. The main idea of
these methods is to rectify the distribution of the stripes to a
reference distribution [11]–[14]. However, their performances
are highly limited because the strong similarity assumptions
[13] are always invalid.

During the past few years, some variational destriping meth-
ods regard stripe removal issue as an ill-posed inverse problem,
and these methods have made significant progress [15]–[22].
The basic idea is that the clear image can be well constrained
via some regularization terms, so as to be estimated from
the striped image. In [15], Shen and Zhang first proposed
the Huber–Markov variational model to remove the stripes
with spatially local adaptive edge-preserving ability. The au-
thors in [16] proposed a sophisticated unidirectional variational
model (UTV) for single-image destriping and made use of
the structural and directional characteristic of the stripes with
better detail-preserving performance. We have extended the
UTV model into the multispectral case [18]. Recently, the low-
rank prior-based destriping methods have been introduced by
Lu et al. [20] and Zhang et al. [21]. By stacking the multi-
spectral images into a 2-D matrix, they exploited the inherently
low-dimensional characteristic of the multispectral data and
recovered the low-rank matrix, to remove all outliers, including
stripes, from the striped data.
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Fig. 2. Illustration of our image decomposition model for destriping.

Although the variation-based methods mentioned earlier
have achieved encouraging destriping performance, they still
face some problems when dealing with various kinds of stripes.
Most of them focus on various properties of the image, such
as gradient-domain smoothness [16], sparsity in dictionary
coefficient domain [18], and low rank [20], [23], [24], whereas
few of them take into account the characteristic of the stripe;
hence, many image details may be removed along with stripes.
Recently, some interesting works have stepped toward the
opposite direction by estimating the stripe component [4], [17],
[25]. However, they focus on estimating the stripe component,
while less taking the image prior into consideration. In this
paper, we address the aforementioned concerns from an image
decomposition perspective. We give a detailed analysis on
both the structural characteristics of the image and the stripes,
and we treat the destriping issue as an image decomposition
problem, in which the low-rank prior is introduced to naturally
characterize the subspace spanned by the stripes, interpreting
the stripes component to be low rank, whereas the image com-
ponent is leveraged by total variation (TV), as shown in Fig. 2.
In this framework, the degraded image is decomposed into the
stripe component and the image component, in which these two
components are treated equally and decoupled completely.

Compared with state-of-the-art low-rank destriping methods,
the advantages of our decomposition method are twofold. First,
previous methods introduce the low-rank constraint on the man-
made 2-D matrix stacked by multiple bands, which may fail
unexpectedly when the bands’ similarity cannot be guaranteed,
whereas our method could directly apply on the single-band
image. Note that our image-decomposition-based method could
also be easily extended to a multispectral case (we will discuss
this extension in Section IV). Second, the traditional low-
rank matrix recovery model is designed for the small structure
noise removal problem [26], which is captured by the L1-norm
(sum of all the elements). While for stripes with an obvious
directional characteristic and a large area, the low-rank induced
nuclear norm is more appropriate than the L1-norm (we will
analyze this in Section II-B).

Contribution: Extensive experimental results on different
multidetector images verify the effectiveness and efficiency of
the proposed method. Our contributions are threefold.

1) We convert the destriping issue into an image decompo-
sition problem and propose a low-rank matrix decompo-
sition model to remove various kinds of stripes, which
offers a new perspective to the image destriping task.

2) The directional characteristic of the stripe is analyzed in
detail, and we propose a decomposition model with low-

rank prior characterizing the subspace spanned by the
stripe, which separates the image structure from the stripe
naturally.

3) The proposed destriping method is based on a single
image, and this is also extended to the multispectral
case, which makes the proposed model more robust and
effective to various stripes.

The remainder of this paper is organized as follows. In
Section II, the common characteristic of stripe noise is analyzed
in detail. The image decomposition model and its optimizations
are formulated in Section III. Section IV dedicates to the mul-
tispectral extension of our method. Experimental results and
discussion are reported in Section V. Finally, we conclude the
paper in Section VI, with a discussion on promising directions
for future research.

II. STRIPE NOISE AND IMAGE CHARACTERISTIC ANALYSIS

A. Image Observation Model

For remote sensing images, the stripes are mainly due to
both additive and multiplicative components [15]. The stripes
caused by the multiplicative component can be well calibrated
online [27], [28]. Moreover, a well-designed additive model
can be applied to the multiplicative case by only introducing
the logarithm as in [4]. In this paper, we mainly focus on the
additive stripe noise. Mathematically, the degradation model
can be formulated as [21]

Y = X +B +N (1)

where Y ∈ R
R×C is the measured image; R and C stand for

the number of the rows and columns, respectively; X is the
desired clear image; B is the offset also named as additive
stripe component; and N is Gaussian white noise. The goal
of our work is to estimate both the clear image and the stripe
simultaneously from the degraded image.

B. Directional Characteristic and Low-Rank Prior of Stripes

Compared with Gaussian noise, the stripe noise has a sig-
nificantly structural characteristic, exhibiting a noteworthily
directional characteristic. Different from a traditional random
noise removal problem, how to utilize these properties is the key
point in the destriping task. Münch et al. [9] and Pande-Chhetri
and Abd-Elrahman [10] proposed the wavelet decomposition
to extract the directional components induced by stripes, as
shown in Fig. 3, and only filter on these specific components.
We can observe that, after wavelet decomposition, the induced
components by stripes only exist in the vertical direction, as
shown in Fig. 3(d).

Moreover, we quantitatively analyze the property of stripes
in remote sensing images. We use the wavelet-based destriping
method [10] to remove both the periodical stripes in MODIS
images and the nonperiodical stripes in hyperspectral images,
as shown in Fig. 4. Interestingly, we found that the ranks of
both stripe matrices are 1. That is to say, the subspace spanned
by the additive stripes can be well represented by the low-rank
constraint.
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Fig. 3. Wavelet decomposition results. The induced components by stripes
only exist in the vertical direction.

Fig. 4. Low-rank property of various stripes in remote sensing images.
(a) Degraded images. (b) Clear image component. (c) Stripe component.

Fig. 5. Low-rank comparison between stripe and man-made matrix. (a) Stripe.
(b) Singular values of (a). (c) Hyperspectral image. (d) Man-made low-rank
matrix from (c). (e) Singular values of (d).

Furthermore, we compared the ranks of the stripes and
the man-made low-rank matrix stacked by nonlocal similarity
patches [21], as shown in Fig. 5. Fig. 5(a) shows a striped im-
age, and Fig. 5(d) shows the man-made low-rank matrix formed
by nonlocal similarity patches in the red square of Fig. 5(c).
The singular values of the corresponding images are shown in

Fig. 5(b) and (e), from which we can observe that the singular
values of striped image rapidly decrease to zero with rank 1,
whereas the singular values of the man-made image slowly
decrease to zero with rank 60. This phenomenon demonstrates
that the rank of the natural image or man-made matrix [20]–[22]
is absolutely higher than that of the stripes. Therefore, we
propose to use the low-rank constraint on the stripe directly and
not on the image. Our low-rank constraint is in line with [4].
The authors [4] implicitly accounted for an exact rank-1 model
for the stripe. Our method will cover the solution of [4], and
this can be applied to much more complex and real non-rank-1
stripe situations. This flexibility makes our method more robust
to stripe of various remote sensing imaging systems.

C. Knowledge About Remote Sensing Images

The auxiliary information for remote sensing images can be
divided into three main categories: spatial local sparsity, spatial
nonlocal self-similarity, and spectral correlation, as shown in
Fig. 1. The spatial local sparsity priors include the gradient-
smoothness-based TV [29] and Huber–Markov prior [30], the
transformed-domain sparsity-based framelet [31] and dictio-
nary learning [32]. The spatial nonlocal self-similarity can be
utilized via low-rank prior [33] or group sparsity [34]. The
spectral correlation is also used in various manners, such as
low-rank prior [35] and spectral TV [19]. The effect of each
category information about the remote sensing images has been
discussed thoroughly in these works. On the contrary to most
of the previous works, we argue that the success of a good
destriping algorithm is mainly owing to the utilization of struc-
tural characteristic of the stripe, not on the image. Therefore,
in this work, we only choose the conventional anisotropic TV
as our image prior. It is reasonable for us using anisotropic
TV to enforce more constraint across the stripe line direction
(horizontal gradient), while less constraint along the stripe line
direction (vertical gradient).

III. PROPOSED SINGLE-IMAGE LOW-RANK

DECOMPOSITION MODEL

Here, we will give our Low-Rank Single-Image Decom-
position (LRSID) model and its optimization. Although there
are several low-rank-based striping works [20]–[22], they all
treat the destriping task as the grossly corrupted error removal
problem and make use of the robust principal component
analysis model [33], which only focuses on the characteristic of
images to estimate the clear image. However, the stripes have an
obvious directional property, which is worth taking into consid-
eration along with the image content, and thus help decouple
the image and stripe components more completely. Thus, in
this work, we propose an image decomposition strategy for the
destriping problem to model both the characteristics of stripe
and image components, simultaneously.

A. Single-Image Low-Rank Decomposition

For the image decomposition problem, the general model can
be formulated as

min
X,B

1

2
‖X +B − Y ‖2F + τP (X) + λP (B). (2)
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As we have analyzed before, the stripe component is a
global and well-patterned repeated structure with an extremely
small rank, which motivates us naturally to use the low-rank
constraint for the stripe component. As for the image, we
introduce the widely used TV regularization [29], due to its
desirable properties, such as convexity, the ability to preserve
sharp edges, and ease to be implemented. Thus, the formulation
of our image decomposition model is given by

min
X,B

1

2
‖X +B − Y ‖2F + τ‖X‖TV + λrank(B) (3)

where ‖X‖TV =
∑

i(|(∇X)i|), and ∇ = (∇x;∇y) denotes
the horizontal and vertical derivative operators at pixel i, re-
spectively. Because of the nonconvexity of the rank constraint,
we introduce the nuclear norm to replace it as its convex
surrogate functional [36], as follows:

min
X,B

1

2
‖X +B − Y ‖2F + τ‖X‖TV + λ‖B‖∗. (4)

According to [37], under suitable conditions, the rank min-
imization program (3) and the convex nuclear norm (4) are
formally equivalent in the sense that they have exactly the
same unique solution. In our experimental results, we have also
found that the rank of the restored stripe via (4) is exactly
the same as the given rank in (3). Our final model (4) is very
simple and easy to understand, in which the main structures
of the image are leveraged via the TV regularization term,
whereas the stripes are well depicted by the nuclear norm,
so that the two components can be decoupled perfectly. The
proposed decomposition model aims to optimize two variables
simultaneously, which can be solved via an alternatively mini-
mizing strategy. Thus, the optimization problem of (4) becomes
two convex subproblems: an L1-regularized and a nuclear-
norm-regularized least square problem. As for the alternative
direction multiplier method (ADMM) [38] algorithm to solve
problem (4), the TV is strictly convex and has a Lipschitz
continuous gradient with only one block. In such a situation,
the convergence property of a generalized ADMM can be well
guaranteed with proper penalty parameters [39]. By choosing
a proper initialization and regularization parameters, we can
always obtain a satisfactory result.

B. Optimization

1) Stripe Update: Given image X , the stripe B can be
estimated from the following minimization problem:

B̂ = argmin
B

1

2
‖X +B − Y ‖2F + λ‖B‖∗. (5)

Equation (5) is a typical low-rank matrix approximation
problem which has a closed-form solution and can be easily
solved by a soft-thresholding operation on the singular values
of observation matrix [40], as follows:{

Bk+1 = U (shrink_L∗(Σ, λ))V
T

shrink_L∗(Σ, λ) = diag {max(Σii − λ, 0)}i
(6)

where Y −X = UΣV T is the singular-value decomposition
of Y −Xk, and Σii is the diagonal element of the singular-
value matrix Σ.

2) Image Update: Given stripe B, the image X can be
estimated from the following minimization problem:

X̂=argmin
X

1

2
‖X+B−Y ‖2F+τx‖∇xX‖1+τy‖∇yX‖1 (7)

where ‖ · ‖1 denotes the sum of absolute value of the matrix
elements. Since the stripe exhibits a significant directional
pattern, it is natural for us to account for a different weight τ
for the spatial ∇xX and ∇yX difference. For simplicity, we
still use the same τ in the next formula derivation but different
values in real implementation. Due to the nondifferentiability
of the L1-norm, we introduce the ADMM [38] to convert the
original problem into two easy subproblems with closed-form
solutions. By introducing two auxiliary variables Dx = ∇xX
and Dy = ∇yX , (7) is equivalent to the following problem:

{X̂, D̂x, D̂y} = arg min
X,Dx,Dy

1

2
‖X +B − Y ‖2F

+ τ‖Dx‖1 + τ‖Dy‖1

+
α

2

∥∥∥∥Dx −∇xX − Jx

α

∥∥∥∥
2

F

+
α

2

∥∥∥∥Dy −∇yX − Jy

α

∥∥∥∥
2

F

(8)

where Jx and Jy are the Lagrangian multipliers, and α is a
positive scalar. Equation (8) can be written as

{X̂, D̂} = arg min
X,D

1

2
‖X +B − Y ‖2F + τ‖D‖1

+
α

2

∥∥∥∥D −∇X − J

α

∥∥∥∥
2

F

(9)

by letting

D =

[
Dx

Dy

]
, ∇ =

[
∇x

∇y

]
, J =

[
Jx

Jy

]
. (10)

The X-related subproblem is given by

X̂=argmin
X

1

2
‖X+B−Y ‖2F +

α

2

∥∥∥∥D−∇X−J

α

∥∥∥∥
2

F

(11)

which has a closed-form solution via fast 2-D Fourier transform
(FFT)

Xk+1 = F−1

(
F
(
(Y −Bk+1)+∇T (αkDk+1 − Jk+1)

)
1+αk (F(∇))2

)
.

(12)

The D-related subproblem is given by

D̂ = argmin
D

τ‖D‖1 +
α

2

∥∥∥∥D −∇X − J

α

∥∥∥∥
2

F

(13)

which can be solved efficiently via a soft shrinkage operator{
Dk+1 = shrink_L1

(
∇Xk+1 + Jk

αk ,
τ
αk

)
shrink_L1(r, ξ) =

r
|r| ∗max(r − ξ, 0).

(14)
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Finally, the Lagrangian multipliers and penalization parame-
ters are updated as follows:

Jk+1 = Jk + αk(∇Xk+1 −Dk+1)

αk+1 = αk · ρ. (15)

The algorithm procedure of LRSID is summarized in
Algorithm 1.

Algorithm 1 Low-Rank Single Image Decomposition
(LRSID)

Require: Degraded image Y
1: Initialize:
2: • Set parameters λ, τx, τy , α, and ρ;
3: • Initialize J (1) = 0, X(1) = Y ;
4: for n = 1: N do
5: Compute Bk+1 by solving (6);
6: Solve (11) for Xk+1;
7: Obtain Dk+1 via (14);
8: Update Jk+1, αk+1 via (15);
9: end for

Ensure: Clean Image X and B.

IV. EXTENSION TO MULTISPECTRAL IMAGE

A. Multispectral Image Low-Rank Decomposition

The LRSID destriping algorithm has utilized the spatial local
smoothness in a single image. The spectral relationship is an-
other important prior knowledge in a multispectral image cube,
which could also provide extra information for better image
recovery. Thus, here, we propose a Low-Rank Multispectral
Image Decomposition (LRMID) model for 3-D remote sensing
image cube destriping by extending the LRSID.

We generalize (4) into high-order images by replacing ‖B‖∗
with

∑R
r=1 ‖Br‖∗, where r = 1, 2, . . . , R, R is the total num-

ber of bands, and Br is the stripe component matrix in the rth
image of this cube. As for the image, by considering the spectral
coherency, we also modify ‖X‖TV by including the gradient
along the spectral axis, as follows:

‖X‖SSTV =
∑
i

(
(∇xX)i + (∇yX)i + (∇zX)i

)
(16)

where ∇ = (∇x;∇y;∇z) denote the first-order forward finite-
difference operators along the x-axis (horizontal direction),
y-axis (vertical direction), and z-axis (spectral direction),
respectively, at pixel i in the image cube. Therefore, the single-
image decomposition model in (4) can be extended to a multi-
image low-rank decomposition model naturally as follows:

min
X,B

1

2

R∑
r=1

‖Xr +Br−Y r‖2F + τ‖X‖SSTV + λ

R∑
r=1

‖Br‖∗.

(17)

Note that, here, we still use the symbolX , B, andY for sim-
plicity. Here,X=[X1,X2, . . . ,XR],B=[B1,B2, . . . ,BR],
Y =[Y 1,Y 2, . . . ,Y R], andX ,B,Y ∈R

M×N×R. Thus, in the

multispectral image cube decomposition task, our goal is to es-
timate the clear image cube and the stripe cube, simultaneously.

The first term in (17) is the data fidelity term, which en-
sures the similarity between the desired clear image and the
degraded image. The second term is the regularization term
by imposing gradient-domain sparse constraints along three
directions (horizontal smoothness in the spatial domain, vertical
smoothness in the spatial domain, and spectral smoothness),
aiming at penalizing the undesirable damage in images and
preserving the sharp edges. The third term enforces the sum
of the rank constraints on image bands, so that the estimated
stripe component in each band is desired to be low rank. τ and
λ are the regularization parameters, which control the tradeoff
between the data fidelity and regularization terms.

B. Optimization

1) Stripe Update: Given image X , the stripe B can be
estimated from the following minimization problem:

B̂r = argmin
Br

1

2

R∑
r=1

‖Xr +Br − Y r‖2F + λ

R∑
r=1

‖Br‖∗

= argmin
Br

1

2
‖Xr +Br − Y r‖2F + λ‖Br‖∗ (18)

which can be solved as (5) via the singular-value thresholding
operation in (6). In fact, the stripe component is still estimated
in 2-D format as the single-image case.

2) Image Update: Given stripe B, the image X can be
estimated from the following minimization problem:

X̂r=argmin
Xr

1

2

R∑
r=1

‖Xr+Br−Y r‖2F +τ‖X‖SSTV. (19)

In the previous stripe estimation, the nuclear norm has been
expressed in matrix format. While for image estimation, for
the purpose of discussing numerical algorithm, we rewrite the
model (19) in vector form by stacking each of them into a long
column vector of size MNR × 1 according to the lexicographi-
cal order

X̂ = argmin
X

1

2
‖X +B − Y ‖22 + τx‖∇xX‖1

+ τy‖∇yX‖1 + τz‖∇zX‖1. (20)

The difference between (7) and (20) is the extra spectral
smoothness along the z-axis. Therefore, by adding an extra
variable and letting

D =

⎡
⎣Dx

Dy

Dz

⎤
⎦ ∇ =

⎡
⎣∇x

∇y

∇z

⎤
⎦ J =

⎡
⎣Jx

Jy

Jz

⎤
⎦ (21)

we can still use the previous algorithm by only replacing the
2-D FFT operator in (12) with n-D FFT and also accord-
ingly modifying in (14) and (15). Note that, although we use
the vector form to describe our method for clarity, in our
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implementation, the image cube estimation was still computed
in 3-D matrix format.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setting

Before the destriping process, the original images were
coded to an 8-bit scale for display convenience. Then, the
stripes with intensity [0, 255] were added into the image.
Finally, for the simplicity of parameter tuning (small intensity
range means small parameter range), the striped images were
normalized between [0, 1]. We compared the proposed method
with several state-of-the-art destriping methods, including the
wavelet Fourier adaptive filter (WFAF) [10], TV [29], statistical
gain estimation (SGE) [4], UTV [16], spectral–spatial adaptive
hyperspectral TV (SSAHTV) [41], anisotropic spectral–spatial
TV (ASSTV) [19], low-rank matrix recovery (LRMR) [21], and
TV-regularized low-rank (LRTV) method [22]. The former four
are based on a single image, whereas the remaining four meth-
ods are based on multiple images. Moreover, LRMR and LRTV
usually need hundreds of input image bands. Therefore, we
only compare our method with them on the Hyperspectral Dig-
ital Imagery Collection Experiment (HYDICE) urban data set.

In the simulated experiments, the hyperspectral image of
Washington DC Mall downloaded from [42] and Moderate
Resolution Imaging Spectroradiometer (MODIS) image Terra
band 31 downloaded from [43] were used. The simulated
images were degraded with periodical, nonperiodical, and both
horizontal and vertical stripes. In real experiments, to verify
the practicability and robustness of the proposed algorithm on
different kinds of stripes, we selected the MODIS image Terra
band 30, the Compact High Resolution Imaging Spectrometer
(CHRIS) images downloaded from [44], and the HYDICE ur-
ban data set downloaded from [45]. We also test our methods on
some other imaging systems with striping artifacts, including
passive millimeter waves (PMMW), infrared focal plane array
(IRFPA), scanning electron microscope (SEM), and charge-
coupled device (CCD).

In order to give an overall evaluation of the destriping per-
formance, several qualitative and quantitative assessments are
used. The qualitative assessments include the visual inspection,
the mean cross-track profile, and the power spectrum. The
quantitative evaluation indexes are peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [46].

In our implementation, parameter τx depends on the degree
of the image stripe. The image with severe stripe will prefer
a larger τx. We empirically set τx ∈ [0.0001, 0.1], τy = 0.005,
λ ∈ [0.001, 0.1], ρ = 1.02, and the corresponding Lagrangian
parameter α ∈ [0.001, 0.3], for all the test images. Note that a
number of trial and error experiments may be carried out for the
best results, but it will not cost too much, since only the parame-
ter τx needs to be tuned slightly. For the compared methods, we
have tried our best to tune their parameters following the rules
recommended by their papers to obtain the best results. For the
reproduction of our research, we will publish our code online.1

1http://www.escience.cn/people/changyi/index.html

Fig. 6. Simulated destriping results for the nonperiodical case. (a) Original
hyperspectral image. (b) Degraded with nonperiodic stripes. Destriping results
by (c) WFAF, (d) SGE, (e) UTV, and (f) LRSID. (g) Estimated stripes by
LRSID. (h) Mean value comparison among the stripes estimated by LRSID,
SGE, and the original one.

B. Simulated Experiments

Here, we test the proposed LRSID method on three kinds of
stripe cases in a single image: nonperiodical stripes in push-
broom imaging devices (representative device: hyperspectral
images), periodical stripes in cross-track imaging devices (rep-
resentative device: MODIS images), and both horizontal and
vertical stripes (representative device: IRFPA images). In addi-
tion, we verified our LRMID destriping method on multispectral
images. In our simulation, we added the synthetic additive stripe
onto the original image, according to the observed model (1).

1) Nonperiodical Stripes: We performed the first simulated
experiment to demonstrate the effectiveness of the proposed
model in handling nonperiodical stripes. In the simulated
process, the locations (part columns of the image are degraded
by stripes) and the intensity value (different stripe lines are with
different intensity values) of each stripe line were randomly
distributed on the image. Fig. 6 displays the destriping results of
various methods. It is obvious that many residual stripes are still
existing in Fig. 6(c) via WFAF. In Fig. 6(d), the SGE method
obtains a satisfactory result. The UTV method removes the
most noticeable stripes, whereas some residual stripes still can
be observed and image structures with the same direction as the
stripes are also suppressed, as shown in Fig. 6(e). In Fig. 6(f),
the stripes are perfectly removed without the introduction of
any noticeable artifacts. The estimated stripe component by
our method is shown in Fig. 6(g). For better visualization,
we enhanced the contrast of the stripe component. Since SGE
was designed to estimate the stripe component, we compared
the estimated stripes between LRSID, SGE, and the true. As
shown in Fig. 6(h), both methods obtain correct estimation at
high frequencies (rapid variations) of the stripes, while still
introducing some minor errors at low frequencies of the stripes.
We attribute this phenomenon to the image content since this
Washington DC image has many stripelike line structures, such
as the vertical road and the house edge. Therefore, both meth-
ods may regard these structures as the stripe to be removed.

2) Periodical Stripes: To illustrate the effectiveness of the
proposed algorithm in removing periodical stripe, we show the
destriping results of different methods in Fig. 7. In this case,
six stripe lines in every ten lines were periodically added into

http://www.escience.cn/people/changyi/index.html 
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Fig. 7. Simulated destriping results for the periodical case. (a) Original
MODIS image. (b) Degraded with periodic stripes. Destriping results by
(c) WFAF, (d) SGE, (e) UTV, and (f) LRSID. (g) Estimated stripes by LRSID.
(h) Mean value comparison among the stripes estimated by LRSID, SGE, and
the original one.

Fig. 8. Simulated destriping results for both horizontal and vertical cases.
(a) Original MODIS image. (b) Degraded with both horizontal and vertical
stripes. (c) Destriping results by LRSID. (d) Estimated stripes.

the stripe-free MODIS image band 31. It is worth noting that
our method is totally blind to the location and periodicity of
the stripes. Our LRSID still obtains the best visual performance
among the compared methods. Moreover, in Fig. 7(h), our
estimated stripes are almost the same as the original stripes,
whereas the stripes estimated via SGE are slightly different
from the true stripes. We also performed another interesting
experiment on images with both horizontal and vertical stripe
lines, which always exist in time-delay-integration CMOS im-
age sensors [47]. Since some methods can only handle the stripe
with one direction or may need the extra spectral information,
we only show the result of our LRSID, as shown in Fig. 8. The
estimated image [see Fig. 8(c)] does not contain any residual
stripes, and the striped image does not contain any image
structure [see Fig. 8(d)].

Fig. 9. Simulated destriping results for the multispectral image case. The
first row shows the original hyperspectral images. The second row shows
the simulated hyperspectral images with different nonperiodical stripes. The
destriping results of SSAHTV, ASSTV, and our LRMID are shown from the
third to fifth rows, respectively. The last row is the estimated stripes by our
LRSID. The first to fifth columns show the images from band 30 to band 34.
The last column shows the zoomed results for the marked red part in band 30.

From the aforementioned simulated experiments of single-
image destriping, we can find that our LRSID is robust to
various kinds of stripes and outperforms other methods, in
terms of image structure preserving and stripe removal. This
is mainly because LRSID employs the structural information
TV regularization on image and the low-rank constraint on
stripe, simultaneously, which demonstrate the effectiveness of
the image decomposition strategy for image destriping.

3) Multispectral Image Stripes: We evaluate the proposed
LRMID method on simulated multispectral striped images in
Fig. 9. We randomly added the nonperiodical stripe on hyper-
spectral images from band 30 to band 34, and the locations of
the stripes between the neighbor bands were different. From the
results, we can observe that the result of SSAHTV still shows
some residual stripes and an obvious oversmoothness artifact.
The ASSTV method can remove most of the stripes, but it also
degrades the image structures with the same direction as the
stripes, as labeled by the red arrow in the zoomed image. Com-
pared with ASSTV, LRMID utilizes the conventional TV to
preserve the image structure, while UTV may easily enforce too
much smoothness across the stripe. More importantly, LRMID
utilizes the nuclear norm to regularize the stripe component and
can significantly increase the discriminative ability for stripe
component.

4) Qualitative Analysis: We further test the performance of
the proposed LRSID method by two qualitative assessments:
the mean cross-track profile and the power spectrum. Fig. 10
shows the mean cross-track profile of the MODIS image shown
in Fig. 7 as an example. The horizontal axis stands for the
column number, and the vertical axis represents the mean value
of each column. We can observe some mild burrs in the curves
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Fig. 10. Spatial mean cross-track profiles for images shown in Fig. 7.
(a) Original image. (b) Striped image. Destriping results by (c) WFAF, (d) SGE,
(e) UTV, and (f) LRSID.

Fig. 11. Power spectrum for images shown in Fig. 7. (a) Original image.
(b) Striped image. Destriping results by (c) WFAF, (d) SGE, (e) UTV, and
(f) LRSID.

in Fig. 10(c) and (d), indicating that there are some residual
stripes in the WFAF and SGE results. The UTV has distorted
the result where a large gradient across the stripe exists. The
resulting mean cross-track profile of LRSID is almost same as
that of the original.

Fig. 11 shows the power spectrum of the MODIS image
in Fig. 7 as an example. For better visualization, the spectral
magnitudes (the y-axis) are plotted with a logarithmic scale,
and the frequencies (the x-axis) are plotted with normalized
frequency. In Fig. 11(b), there are several large impulses in
the curve due to the effects of stripes. After destriping, our
method removes all the huge large impulses, indicating that
all the stripes have been removed from the image, while it has
preserved almost all the small burrs, meaning that the texture
and image structure are well preserved. Other methods leave
unexpected impulses [see Fig. 11(c)] or oversmooth the curve
[see Fig. 11(e)]. In Fig. 11(d) and (e), the power spectrum
slightly shifts, due to the energy loss.

5) Quantitative Evaluation: To demonstrate the robustness
of our LRSID method in the presence of different levels of
stripe, the quantitative assessments, including PSNR and SSIM
values, are reported in Tables I and II, respectively. In the tables,
the intensity parameter means the mean absolute value of the
stripe lines, and r denotes the ratio of the stripe area within
the image. The highest PSNR and SSIM values are highlighted

in bold. We have the following observations. First, the SGE
and proposed LRSID methods achieve the highest PSNR and
SSIM values in most cases, which verify the effectiveness of the
low-rank constraint for the stripes. Second, in periodical stripe
cases, our LRSID has more advantages over other methods than
that of the nonperiodical case since the periodical stripe meets
the low-rank characteristic more. Third, with the increasing of
stripe level, the advantage of our method over other methods
becomes bigger. The main reason why SGE performs well in
simulated experiments is that it assumes the rank-1 model for
the stripe, which only meets the fact that we simulated stripe
with rank 1. However, for most real remote sensing images,
this assumption will be violated. We will show how our LRSID
method still works in complex situations.

C. Real Experiments

Here, various real-world striping data sets were used in our
experiments to demonstrate the robustness and efficiency of our
algorithms.

1) Single-Image Stripe Removal: We have chosen three rep-
resentative nonperiodical stripe images of push-broom-based
imaging systems and three periodical stripe images of cross-
track-based imaging systems, as shown in Fig. 12. The striped
image selected from CHRIS band 31, as shown in Fig. 12(a), is
highly contaminated by nonperiodic stripes. Fig. 12(b) shows
the light nonperiodic stripe in CHRIS image band 12, wherein
some obvious image structure is quite similar to the stripe.
Fig. 12(c) is a subimage extracted from HYDICE image band
103, in which nonperiodical stripes exist. Fig. 12(d)–(f) shows
three representative periodical stripe categories in MODIS
image: detector-to-detector stripe, mirror-side stripe, and
random stripe.

Figs. 13–18 show single-image destriping results. It is shown
that our LRSID method has fully decoupled the stripe and
image components and consistently outperforms the compared
methods with the best visual quality. There are several points
worth noting. First, in Fig. 15, we compare our single-image-
based LRSID with multispectral image low-rank-based LRMR
[see Fig. 15(e)] and LRTV [see Fig. 15(f)]. It is shown that the
LRSID has removed the stripes perfectly, while there are still
some residual stripes in their results, which demonstrate that the
low-rank constraints on stripe are more reasonable and effective
in the stripe removal issue. Second, in Fig. 16, i.e., the zoom
version of Fig. 15, we can observe that our LRSID method
obtains more clear image with fewer stripes and more visual
smoothness appearance, due to the effectiveness of the TV term
on the image. Third, in the heavy stripe case (see Figs. 13 and
15), our method can remove the stripe more completely than the
others. Fourth, in both heavy (see Fig. 13) and light stripe cases
(see Fig. 14), our method preserves the image structure more
intactly, whereas other methods fail to achieve this important
goal, as indicated by red arrows in Fig. 13 and red ellipses in
Fig. 14. Last but not least, our LRSID method can work well in
the presence of non-rank-1 case, as shown in Fig. 18. Overall,
the results of the proposed method are consistent, for all test
images, and exhibit good visual quality, with fewer artifacts
than those obtained by the compared methods.
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TABLE I
PSNR VALUES OF DIFFERENT METHODS UNDER VARIOUS NOISE LEVELS. THE INTENSITY DENOTES THE
ABSOLUTE MEAN VALUE OF THE STRIPES. r MEANS THE STRIPE COVERING AREA WITHIN THE IMAGE

TABLE II
SSIM VALUES OF DIFFERENT METHODS UNDER VARIOUS NOISE LEVELS

Fig. 12. Real remote sensing images. (a) CHRIS image band 31. (b) CHRIS
image band 12. (c) HYDICE image band 103. (d) Detector-to-detector stripes.
(e) Mirror-side stripes. (f) Random stripes.

Fig. 13. Real destriping results for nonperiodical stripes in CHRIS image band
31. Destriping results by (a) WFAF, (b) TV, (c) SGE, (d) UTV, and (e) LRSID.
(f) Our estimated stripes.



CHANG et al.: REMOTE SENSING IMAGE STRIPE NOISE REMOVAL: FROM IMAGE DECOMPOSITION PERSPECTIVE 7027

Fig. 14. Real destriping results for nonperiodical stripes in CHRIS image
band 12. Destriping results by (a) WFAF, (b) TV, (c) SGE, (d) UTV, and
(e) LRSID. (f) Our estimated stripes.

Fig. 15. Real destriping results for nonperiodical stripes in HYDICE im-
age band 103. Destriping results by (a) WFAF, (b) TV, (c) SGE, (d) UTV,
(e) LRMR, (f) LRTV, and (g) LRSID. (h) Our estimated stripes.

Fig. 16. Zoomed results of HYDICE image band 103. (a) Original image.
Destriping results by (b) WFAF, (c) TV, (d) SGE, (e) UTV, (f) LRMR,
(g) LRTV, and (h) LRSID. (i) Our estimated stripes.

Fig. 17. Real destriping results for periodical stripes in MODIS image band 30.
Destriping results by (a) WFAF, (b) TV, (c) SGE, (d) UTV, and (e) LRSID.
(f) Our estimated stripes.

Fig. 18. Real destriping results for mirror-side stripes in MODIS image band 27
and random stripes in MODIS image band 33. Images with (a) mirror-side and
(d) random stripes. (b) Estimated image and (c) stripe from (a). (e) Estimated
image and (f) stripe from (d) by LRSID.

2) Multispectral Image Stripe Removal: Here, we test our
LRMID method on real multispectral CHRIS images from
band 32 to 37, as shown in Fig. 19. It can be clearly observed
that the SSAHTV oversmooth all the images, as it is not suitable
for the removal of heavy stripe. ASSTV can remove the stripe
clearly, but some image structures with the same direction as
the stripe are also removed. The stripes are perfectly removed
by LRMID without introduction of noticeable artifacts.

3) Large-Swath Stripe Removal: Our LRSID can be also
applied to real large-swath remote sensing images, such as
MODIS image with 1354∗2030. In Fig. 24, we show the real
destriping result for MODIS image band 27 with 1354∗2030
size. In the first row, we can observe many black holes without
stripe there, indicating that the stripe component is non-rank 1.
In the third row, the estimated stripe component is almost
exactly the same as the stripe. This experiment demonstrates
that, for real large images with non-rank-1 stripe, our LRSID
method can obtain quite satisfactory results with about 2 min.
Normally, for an 256∗256 image, it would cost about 3 s of
running our algorithm on the personal computer with MATLAB
2014a, an Intel i7 CPU at 3.6 GHz, and 32-GB memory.
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Fig. 19. Real destriping results for the multispectral image case. The first row shows the original CHRIS images from band 32 to band 36. The destriping results
of SSAHTV, ASSTV, and our LRMID are shown from the second to fourth row, respectively. The last row shows the stripes that we estimated.

4) Non-Remote Sensing Images: We further test our LRSID
method on various non-remote sensing images with similar
striping artifacts. As shown in Fig. 20, our method shows
excellent destriping performance in various striped images. Not
only the estimated images are fully free from stripe issue but
also the estimated stripe component is exactly belonging to
its original appearance, such as vertical stripes in the PMMW
image and both horizontal and vertical stripes in the IRFPA
image, which strongly demonstrate the effectiveness of our
method, owing to the low-rank constraint in our decomposition
model. Although the stripes are much related to the particular
imaging platform, our general method captures the intrinsic
characteristics of the striped: directional characteristic of stripe

and its low-rank property. This is the main reason why our
method works well in so many imaging systems.

5) Limitation: Although the stripe component in images is
always low rank, for stripes with small fragment cases, this
situation cannot be guaranteed. For example, in a MODIS Terra
image band 27, as shown in Fig. 21, some obvious non-low-
rank stripe fragments are left “unprocessed.” An alternative is
to process the striped images in a manner of small patches.

D. Interesting Extensions

Here, we apply our LRSID to some more real and practical
situations but with fewer attention: multiplicative stripe and
mixed random and stripe noise.



CHANG et al.: REMOTE SENSING IMAGE STRIPE NOISE REMOVAL: FROM IMAGE DECOMPOSITION PERSPECTIVE 7029

Fig. 20. Effectiveness of our method for stripes in various imaging systems. The
first to the fourth row show the PMMW, IRFPA, SEM, and conventional CCD
images, respectively. The first column shows the original degraded images. The
destriping results of TV and our LRSID are shown from the second to third
column, respectively. The last column is the estimated stripes by our method.

Fig. 21. Failure case of our method. (a) Original MODIS Aqua band 27 image
with small fragment stripe. (b) Our LRSID result leaves the fragment stripe
unprocessed.

1) Multiplicative Stripe Removal: As we have introduced in
Fig. 1, for most remote sensing imaging systems, the stripes con-
tain both additive and multiplicative components. The proposed
LRSID method is designed to removed the additive stripe noise,
according to the additive decomposition degraded model. How-
ever, by introducing the logarithm as in [4], our LRSID method
can be used to handle the multiplicative stripe noise as well.
As shown in Fig. 22(c), the multiplicative stripes have been
removed satisfactorily. However, the existing works only con-
sider additive stripe or multiplicative stripe, individually. How
to blindly restore the image contaminated by both the additive
and multiplicative stripes is a challenging and interesting work.

2) Single-Image Mixed Random and Stripe Noise Removal:
Most destriping methods usually make use of the multiple
bands to remove the mixed random and stripe noise. However,
if we just have one single image or the image bands’ similarity
cannot be guaranteed, we have to remove the mixed noise in
one single image. Our LRSID destriping method can naturally

Fig. 22. Simulated destriping result for multiplicative stripe. (a) Original image
Lena. (b) Degrade by multiplicative stripe. (c) Our LRSID result.

Fig. 23. Real single-image destriping result for mixed random and stripe
noise. (a) Real MODIS image band 21. (b) Block-matching and 3-D filtering
(BM3D) for random noise. (c) BM3D+VSNR (first denoising by BM3D [48]
and then destriping via variational stationary noise remover (VSNR) [17]).
(d) VSNR+BM3D. (e) WFAF+BM3D. (f) LRSID. (g) LRSID with incorpo-
rating the nonlocal image prior. (h) Stripe component.

incorporate the popular nonlocal priors [34] to further improve
the restoration performance in a single image. As shown in
Fig. 23(f), our LRSID can obtain a satisfactory restoration
result. With incorporating the structural group sparsity prior
[34] into our model [see Fig. 23(g)], the result is a more visual
pleasure with smooth appearance and clear edges.

VI. CONCLUSION AND DISCUSSION

We here briefly summarize our image-decomposition-based
destriping work and draw promising lines for future research in
the destriping field.

A. Summary

In this paper, we proposed to remove the stripe in remote
sensing images from the image decomposition perspective.
Different from previous destriping works, the stripe component
and image component are treated equally in our work. In
this decomposition framework, the stripe and image can be
estimated iteratively, in which the iterative estimation manner
would benefit from each other. The low-rank prior enforced
on the stripe can discriminatively distinguish the stripe from
the image component, whereas the TV regularization on the
image can help provide a clean image without stripe compo-
nent. Moreover, via incorporating the spectral correlation in
multispectral remote sensing images, we extend the decompo-
sition model from a 2-D single image into a 3-D multispectral
image case. Our methods have been tested on various simu-
lated and real striped images, and these have achieved better
destriping performance than compared methods, in terms of
stripe categories, preservation of detail information, and so on.
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Fig. 24. Real entire swath MODIS band 27 image with 1354∗2030 size.
Second row shows the estimated image component. Third row shows the
estimated stripe component.

B. What Next?

1) Image Decomposition: As we have demonstrated in this
work, the image decomposition strategy shows significant ef-
fectiveness for stripe removal. How to utilize more powerful
tools to capture the structure characteristic of stripe is still a
promising direction; for example, the directional sparsity regu-
larization, i.e.,L21-norm [49], may be a good choice. Moreover,
for images, the nonlocal information has shown huge success in
various applications [48]. Incorporating these knowledge into
our decomposition framework may further improve the final
destriping performance.

2) Semiblind Image Inpainting: It is worth noting that the
stripe component only influences part of the clean image. The
conventional denoising methods or decomposition methods will
inevitably change the value of the clean pixels. Moreover, in
an inpainting way, the multiplicative stripe can also be re-
moved without considering its degradation manner. Therefore,
we believe the image inpainting methods for stripe removal

would be a promising research direction. However, unlike the
conventional image inpainting, how to incorporate the domain
knowledge about the stripe into the inpainting framework is an
important issue. We tend to regard this stripe removal inpainting
method with domain knowledge as semiblind image inpainting.

3) Deep Learning: Nowadays, with the rapid increasing
of big data, including the remote sensing data, the machine
learning, particularly deep learning, shows powerful ability in
various applications, including image denoising, superresolu-
tion, and so on [50]. Acito et al. [51] have already used the
subspace-learning-based dimensionality reduction technique to
remove the stripes. We are glad to see more and more works via
learning strategy for the development of this research area.
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