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Destriping Remote Sensing Image via Low-Rank
Approximation and Nonlocal Total Variation

Wenfei Cao , Yi Chang, Student Member, IEEE, Guodong Han, and Junbing Li

Abstract— Stripe noise removal is a fundamental problem in
remote sensing image processing. Many efforts have been made
to resolve this problem. Recently, a state-of-the-art method was
proposed from image-decomposition perspective. This method
argued that the stripe and clear image can be simultaneously
estimated by modeling the directional structure of stripes and the
local smoothness of remote sensing images. However, the potential
of this method cannot be fully delivered when confronting with
dense stripes with high intensity. In this letter, we further consider
the nonlocal self-similarity of image patches in the spatiospectral
volume in terms of nonlocal total variation and propose a method
of better robustness to dense stripes. Experimental results on both
synthetic and real multispectral data show that the proposed
method outperforms other competing methods in the remote
sensing image destriping task.

Index Terms— Destriping, low rank, nonlocal total varia-
tion (NLTV), spatiospectral volume.

I. INTRODUCTION

REMOTE sensing images [1] normally consist of
dozens or even hundreds of spectral bands and have

attracted much attention from various application fields, such
as mineral detection, urban planning, and precision farming.
Unfortunately, the stripes in remote sensing images not only
severely degrade the visual quality of images but also limit the
related subsequent applications, e.g., image unmixing [2] and
classification [3]. Therefore, the destriping issue is a vitally
important problem in remote sensing imagery applications.

Many destriping methods with good performance have
been developed. These methods can be coarsely cate-
gorized into three groups, i.e., statistical-matching-based
methods [4], [5], digital-filtering-based methods [6], and
variational-model-based methods [7]–[10]. Among these
methods, variational-model-based methods are a kind of
widely studied approach. Shen and Zhang [7] first proposed
the Huber–Markov variational model with spatially local
adaptive edge-preserving capacity to remove the stripes.
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Bouali and Ladjal [8] discovered the directional characteristic
of the stripe and proposed a sophisticated unidirectional total
variation (UTV) model for single image destriping. However,
because of excessive constraint of UTV on the unidirectional
derivative, image structural details with the same direction
as stripes are inevitably removed. To overcome this draw-
back, many variants of UTV were proposed (see [11], [12],
and references therein). In addition, the destriping meth-
ods exploiting the rich spectral information have also been
studied. Li et al. [13] proposed a multidimensional nonlocal
total variation (NLTV) method for suppressing the mixed
noise. Zhang et al. [9] and He et al. [10] presented two
low-rank matrix recovery methods in terms of modeling the
correlations among spectral bands. For the MODIS-like data,
Chang et al. [14] developed the anisotropic spatiospectral total
variation (ASSTV) method.

Recently, from the image-decomposition perspective,
Chang et al. [15] proposed a state-of-the-art Low-Rank
regularized Image Decomposition (LRID) method for the
destriping task. In this letter, recovering stripe and clear image
simultaneously is considered as an ill-posed problem, and
thus the latent structures of stripe and image are necessarily
discovered to regularize the ill-posed problem. More precisely,
the directional structure of stripe and the local smoothness
of image variations are, respectively, modeled in this letter,
leading to a method of outstanding performance. However,
when confronting with dense strips with high intensity, the per-
formance of this method might be discounted. In this letter,
we further consider the nonlocal self-similarity of patches
in the spatiospectral volume and propose a new variational
method of better robustness.

II. PROBLEM FORMULATION AND ALGORITHM

A. Observation Model
Assuming that the stripe is additive, the degradation process

due to stripe can be formulated as

Y = X + S (1)

where Y = {Y1, Y2, . . . , YB} is the observed image, with the
size of M × N × B , in which M , N , and B , respectively,
indicate the number of the rows, columns, and spectral bands.
X = {X1, X2, . . . , XB} is the original clear image, and
S = {S1, S2, . . . , SB} is the stripe component. The goal of
this letter is to simultaneously estimate both the clear image
and stripe from the degraded image.

B. Low-Rank Approximation and NLTV Model

Recovering the original clear image and stripe from the
degraded image is a highly ill-posed problem. Therefore, some
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Fig. 1. (a) Curves for the normalized singular values of the stripe and spectral image, respectively. (b) Illustration for the nonlocal self-similarity of image
patch and the relationship of the center voxels in local and nonlocal regions.

priori knowledge of the original clear image and stripe is
necessarily utilized to regularize the ill-posedness. In the
following, we will first discover the priori knowledge of the
stripe and original clear image, and then introduce appropriate
mathematical modelings of these priors. Finally, by combining
the two prior modelings, we propose a new destriping method.

1) Stripe Modeling: The stripes, as demonstrated in [15],
are different from the random noises and can be considered as
special images with the directional structure. The directional
structure implies the low-rank property of band stripes Sk

(k = 1, 2, . . . , B). As shown in Fig. 1(a), when compared
with the dense band images Xk(k = 1, 2, . . . , B), the low-
rank property of band stripes is significant, which can benefit
the estimation of each band stripe. In this letter, matrix
nuclear norm, as the tight convex surrogate of rank, is used
to characterize the directional structure of each band stripe.
Then, the modeling of stripe volume is obtained by a weighted
summarization of the nuclear norm of each band stripe

LR(S) := 1

B

B∑
k=1

�Sk�∗ (2)

where �A�∗ = ∑min(M,N)
i=1 σi (A) indicates the matrix nuclear

norm, and σi (A) stands for the i th singular value of A.
2) Multispectral Image Modeling: The nonlocal self-

similarity indicates a phenomenon that a reference patch in an
image owns many similar structure patches around it. Fig. 1(b)
gives an intuitive illustration. The reference patch marked by
a red box possesses five similar patches marked by orange
boxes, in which two patches lie in the local region of the
reference patch and three patches in the nonlocal region. This
powerful priori knowledge has been successfully applied to
various image processing tasks [16]. In this letter, this priori
knowledge is utilized for the destriping task.

Mathematically, let us denote a reference patch with the
center voxel xr by Pr , denote the center positions of six locally
adjacent patches of the reference patch by D1, and denote
the positions of all the voxels in a big W × W × 3 window
around the center voxel xr by �. Then, we can compute the
convolution distances between the reference patch and the
around patches with their center positions in the set � \D1 as

the set S = {do = �(Po − Pr ) ⊗ G�F : o ∈ � \ D1}, where
Po stands for the oth candidate patch with the center voxel
xo, G is a Gaussian filter of the same size as the reference
patch, and ⊗ stands for the convolution operation. In practice,
the convolution distances can be computed based on a good
estimate of the underlying true image. From the distance set
S, we can select m − 6 smallest distances, which correspond
to m − 6 similar structure patches in the nonlocal region of
the reference patch. After obtaining the m similar structure
patches, we can define 3-D nonlocal total variation of the
center voxel xr . For this center voxel, as shown in Fig. 1(b),
its nonlocal total variation is formulated as

NLTV(xr ) :=
√ ∑

o∈D1

wo · (xo − xr )2 +
∑

o∈D2

wo · (xo − xr )2

where D2 stands for the nonlocal region around the reference
patch Pr , the cardinality of D1∪D2 is the number m of similar
patches, and wo(o = 1, 2, . . . , m) is an adaptive weight. Here,
wo is obtained by first computing similar-patch distances in
terms of exp(−(d2

o/h2)) and then normalizing it, where h is
a scale parameter. Then, the 3-D NLTV of the image volume
X can be defined as

NLTV(X ) :=
∑

r

NLTV(xr ). (3)

Compared with the common 3-D total variation, which only
describes local spatiospectral correlation, NLTV considers the
integration of local spatiospectral correlation and nonlocal
correlation and can give more accurate image restoration.

3) Proposed Model: Combining stripe modeling (2), image
modeling (3), and observation model (1), we propose a new
variational model for the destriping task as

min
S X

1

2
�Y − S − X�2

F + λ1LR(S) + λ2NLTV(X ) (4)

where λ1 and λ2 are the tradeoff parameters. The first term
in this model is the fidelity term, and the second and third
terms are regularization terms. Here, it is necessary to make a
comparison between the proposed model and the LRID model
in [15]. The anisotropic total variation in the LRID model
is used to describe local intensity variation of the spectral
images, while the NLTV in the proposed model describes the
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spatiospectral intensity variation in both local and nonlocal
regions of the reference patch, and hence can lead to better
robustness to the noises, which will be demonstrated in the
subsequent experiments.

C. Optimization Algorithm

The optimization model in (4) can be solved by alternatively
optimizing S-subproblem and X -subproblem [17].

1) S-subproblem is

min
S

1

2
�S − (Y − X n)�2

F + λ1

B

B∑
k=1

�Sk�∗.

This subproblem can be solved by performing B singular
value shrinkages

Sn+1
k := Shrinktrace

(
Yk − Xn

k ,
λ1

B

)
k = 1, 2, . . . , B.

Here, Shrinktrace(A, λ) = Udiag
(
Tλ(diag(�))

)
VT ,

where U�VT is the singular value decomposition of
matrix A and Tλ(·) is the well-known soft thresholding
shrinkage operator.

2) X -subproblem is

min
X

1

2
�X − (Y − Sn+1)�2

F + λ2NLTV(X ).

This NLTV regularized denoising problem, according to
the work [18], can be solved by an iterative procedure.
This iterative procedure can be formally denoted by

X n+1 := Shrinknltv(Y − Sn+1, λ2).

It is worth noting that X in the above alternative iterations is
initialized by the method ASSTV [14], and the positions of the
nonlocal similar patches are sought out through the estimated
X and then fixed throughout the iterative procedure.

III. EXPERIMENTS

In this section, the simulated and real experiments are
conducted to demonstrate the effectiveness of the proposed
method. All the testing images are normalized into the
range [0, 1]. We compared the proposed method, termed
as LrNLTV, with the two state-of-the-art destriping meth-
ods: ASSTV and LRID [15]. For the simulated experiments,
the mean pink signal-to-noise ratio (MPSNR) and mean struc-
ture similarity (MSSIM) [19] of spectral band images are
selected as the assessment indexes, where a high MPSNR
value implies a good recovery performance over the image
intensity and a high MSSIM value indicates a good recovery
performance over the image structure features. In our method,
the number of similar patches m is empirically set as 16 and
each patch is of the size 7 × 7. The window size W is
empirically set as 25. The scale parameter h is empirically
set as 20. The tradeoff parameters λ1 and λ2 are manually
adjusted to some value such that our method can achieve best
MPSNR values for the testing images. When λ1 empirically
takes a value in the range [0.2, 0.3] and λ2 a value in the
range [0.0075, 0.01], our method LrNLTV will have a good
recovery performance.

Fig. 2. Testing remote sensing spectral images. Note that only one
band image is shown here. (a) For simulated experiments. (b)–(d) For real
experiments.

TABLE I

MPSNR (dB) AND MSSIM VALUES OF DIFFERENT DESTRIPING
METHODS FOR PERIODIC STRIPES UNDER

DIFFERENT NOISE LEVELS

A. Simulated Experiment Results

The hyperspectral image Washington DC Mall1 is used as
the testing image [see a band image of this image volume
in Fig. 2(a)]. The striped images are generated by adding the
synthetic stripe via the observed model (1) into the spectral
images between band 21 and band 30. The structure of stripes
is either periodic or nonperiodic due to the difference of
imaging mechanism. We show the quantitative assessment
results for periodic and nonperiodic stripes with different noise
levels in Tables I and II, respectively. In these two tables,
r t denotes the ratio of the stripe area within each band image
and intensi ty means the mean absolute value of the stripe
lines.

From these two tables, the following two observations can
be obtained. First, when the periodic stripe is added, LRID
method produces a bit better recovery results on average than
those of the ASSTV method. However, when the nonperiodic
stripe is introduced, the ASSTV method works slightly better
than the LRID method. Second, our method LrNLTV has
a consistently better performance than the two competing
methods, which suggests that our method is very robust to

1https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html.
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TABLE II

MPSNR (dB) AND MSSIM VALUES OF DIFFERENT DESTRIPING
METHODS FOR NONPERIODIC STRIPES UNDER

DIFFERENT NOISE LEVELS

Fig. 3. Destriping results for the periodical stripe case (r = 0.6 and
intensity = 100) in simulated experiments. (a) Original hyperspectral image
band 25. (b) Degraded image with periodic stripes. Destriping results by
(c) LRID, (d) ASSTV, and (e) LrNLTV. The differences of the recovery image
with the original image for (f) LRID, (g) ASSTV, and (h) LrNLTV. (i) Detailed
regions cropped from (c)–(e).

the dense stripe with high intensity. This observation is not
surprising. This is because when compared with these two
methods, our method considers the self-similarity property in
the nonlocal region besides the local smoothness of spectral
images, and the modeling of this additional information can
enhance the robustness of our method.

We also exhibit the subjective recovery results in
Figs. 3 and 4. It can be seen, from Fig. 3(f)–(h), that the
difference of the recovery image with the original one for
our method LrNLTV is visually not very large and more
close to zero than those for the methods LRID and ASSTV,
especially as the yellow arrows indicate. This finding reveals
that the recovery result of our method is the best of all
compared methods. Moreover, from the detailed regions of
Fig. 3(i), it can be observed that the recovery results of the
methods LRID and ASSTV are blurred, whereas our method
gives a relatively sharp result. In addition, the estimation
accuracy of stripes is also a good index for evaluating the

Fig. 4. Mean value comparison between the stripes estimated by LRID,
ASSTV, LrNLTV, and the original one (r = 0.6 and intensity = 100).

Fig. 5. Destriping results for the HYDICE image with the nonperiod-
ical stripe. (a) Original image band 103. Destriping results by (b) LRID,
(c) ASSTV, and (d) LrNLTV.

recovery performance of destriping methods. Fig. 4 gives the
mean values of the estimated and original stripes in the first
80 columns. From this figure, we can observe that the estimate
stripe by our method LrNLTV is more matched to the original
stripe than the other two methods, which implies that the
proposed method is of better recovery capacity.

B. Real Experiment Results

We further conduct real experiments to justify the effective-
ness of the proposed method. The testing image volumes of
size 256 × 256 × 6 were extracted from one HYDICE image2

with the nonperiodic stripe and two MODIS images3 with
the periodic stripe, one band image of which is, respectively,
shown in Fig. 2(b)–(d).

Fig. 5 shows the destriping results for the HYDICE image
with the nonperiodic stripe, and Figs. 6 and 7 exhibit the
destriping results for the MODIS image with the moderate
and heavy periodic stripe, respectively. From Fig. 5, it can be
seen that the recovery image of the LRID method, as the red

2http://www.tec.army.mil/hypercube.
3https://ladsweb.modaps.eosdis.nasa.gov/.
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Fig. 6. Destriping results for the MODIS image with the moderate periodical
stripe. (a) Original image band 30. Destriping results by (b) LRID, (c) ASSTV,
and (d) LrNLTV. It would be better to see this figure by zooming on a
computer screen.

Fig. 7. Destriping results for the MODIS image with the heavy periodical
stripe. (a) Original image band 28. Destriping results by (b) LRID, (c) ASSTV,
and (d) LrNLTV.

elliptical box indicates, contains a little weak stripes, and some
recovery regions of the ASSTV method are oversmoothed,
e.g., the white traffic marking in the middle of the highway,
whereas the LrNLTV method overall gives a visually clear and
sharp recovery image. The reason might be that the LRID and
ASSTV methods only model the local smoothness in terms
of spatiospectral total variation, whereas our method LrNLTV
considers the additional self-similarity information in the non-
local region of images, which can boost the robustness and
recovery performance. Similar observations can be obtained
from Figs. 6 and 7.

IV. CONCLUSION

In this letter, we proposed an NLTV and low-rank regular-
ized variational model for destriping remote sensing images.

In this model, each band stripe matrix is considered as a
special image with low-lank constraint. The NLTV is then
employed to describe the spatiospectral intensity variation
of spectral images in the local and nonlocal regions of the
reference patch. Because of the introduction of the nonlocal
region information of images, the proposed method has a
better robustness over other competing methods. Experimental
results on the simulated and real data reveal that the proposed
method outperforms two state-of-the-art destriping methods in
terms of the objective and perceptual qualities. In the future
work, our effort will be devoted to a fast implementation of the
proposed method in the graphic processing unit architecture.
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