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Abstract

Recent low-rank based matrix/tensor recovery methods
have been widely explored in multispectral images (MSI)
denoising. These methods, however, ignore the difference
of the intrinsic structure correlation along spatial sparsity,
spectral correlation and non-local self-similarity mode. In
this paper, we go further by giving a detailed analysis about
the rank properties both in matrix and tensor cases, and
figure out the non-local self-similarity is the key ingredient,
while the low-rank assumption of others may not hold. This
motivates us to design a simple yet effective unidirectional
low-rank tensor recovery model that is capable of truthfully
capturing the intrinsic structure correlation with reduced
computational burden. However, the low-rank models suffer
from the ringing artifacts, due to the aggregation of over-
lapped patches/cubics. While previous methods resort to
spatial information, we offer a new perspective by utiliz-
ing the exclusively spectral information in MSIs to address
the issue. The analysis-based hyper-Laplacian prior is in-
troduced to model the global spectral structures, so as to
indirectly alleviate the ringing artifacts in spatial domain.
The advantages of the proposed method over the existing
ones are multi-fold: more reasonably structure correlation
representability, less processing time, and less artifacts in
the overlapped regions. The proposed method is extensively
evaluated on several benchmarks, and significantly outper-
forms state-of-the-art MSI denoising methods.

1. Introduction

A MSI could provide abundant information with mul-
tiple specific frequencies across the electromagnetic spec-
trum, which facilitates the fine representation of a real
scene. Unfortunately, during the imaging procedure, the
MSI is usually contaminated by the noises, e.g., Gaussian
noise, making the MSI unsuitable for subsequent applica-
tions. Therefore, denoising has been an essential prepro-

cessing step for further MSI applications, such as classifi-
cation [33], super-resolution [6], compressive sensing [31].

In MSI denoising, the non-local self-similarity which
has been widely used in single image processing, and the
additional high spectral correlation have been extensively
proven to be efficient prior knowledge [10, 11, 32]. The
low-rank tensor models [21, 34, 7] have been proposed to
exploit the two kinds of knowledge simultaneously by con-
structing a 3-order tensor, namely the spatial local spar-
sity (mode-1), non-local self-similarity (mode-2), and spec-
tral high correlation (mode-3). Generally, most of exist-
ing low-rank tensor models utilize these knowledge by sim-
ply adding up the ranks (or its relaxations) along all tensor
modes [24, 16, 9, 26]. A major difference with the ma-
trix case, however, is the fact that the different n-ranks of
a higher-order tensor are not necessarily the same [15]. It
is unreasonable for previous works to ignore the subspace
discrepancy among each mode.

The ISTReg was proposed very recently [26] by tak-
ing both fine-grained tensor sparsity insights of Tucker and
CANDECOMP/PARAFAC (CP) low-rank decompositions
into consideration to capture intrinsic structure correlation
among each mode. The intuition behind ISTReg is to add
more constraints into the model. However, this makes
the heavy computational burden issue more unacceptable,
which naturally exists in MSI due to its large volume. Our
starting point to capture intrinsic structure correlation is in
line with ISTReg [26], while we take a step from the op-
posite philosophy by distinguishing subspace discrepancy
among each mode. Specifically, we intend to utilize the key
structure correlation and discard the weaker correlation, so
as to obtain the better result in a reasonable time.

To this end, we firstly illustrate why low-rank tensor re-
covery model performs better than the low-rank matrix re-
covery model in multispectral images and then give a de-
tailed analysis about the rank properties along each mode
of the constructed 3-order tensor via the high-order singular
value decomposition (HOSVD). We discover that low-rank
property of the non-local self-similarity is significantly su-



perior to that of the spatial and spectral correlation. Moti-
vated by this observation, a simple yet effective unidirec-
tional low-rank tensor prior is proposed to model the intrin-
sic correlation of the MSI in a more reasonable manner with
less processing time.

Although patch/cubic based low-rank methods obtain
state-of-the-art performance, they inevitably introduce the
consistency issue of the overlapped pixels due to the
patch/cubic aggregation operation. Conventional methods
usually handle this problem from the spatial view [35, 13].
We offer a new perspective from the exclusively spectral
correlation in MSI to alleviate this problem. We bene-
fit from additional spectral information and model it with
analysis-based hyper-Laplacian prior, which is free of patch
partition operation. Integrating an analysis-based hyper-
Laplacian prior into synthesis-based low-rank tensor model
can reduce the ringing artifacts in spatial domain meanwhile
better preserve the spectral structure. At last, we develop
an efficient optimization algorithm to solve the proposed
hyper-Laplacian regularized unidirectional low-rank tensor
recovery problem (LLRT).

The contributions of this paper include: 1) The detailed
low-rank property of MSI is explored in both matrix and
tensor cases, which offers a new insight to model the low-
rank property in MSI. A unidirectional low-rank tensor re-
covery model is proposed for accurate and fast encoding
the intrinsic low-rank property of a MSI; 2) The hyper-
Laplacian prior is introduced to model the consistency issue
from the spectral perspective. On one hand, the spatial in-
consistency pixels can be suppressed; on the other hand, the
spectral structure can be well preserved; 3) We develop an
efficient optimization scheme for LLRT minimization. The
proposed method has been tested on extensive MSI datasets.
The results validate that LLRT outperforms state-of-the-art
methods by a large marginal in terms of both performance
and speed.

2. Related work
Low-rank matrix/tensor recovery is a representative kind

of state-of-the-art MSI denoising method. We compare
them with proposed method in three important aspects.
Information Utilization: The spectral correlation and non-
local self-similarity are two intrinsic characteristics un-
derlying a MSI. Early methods usually utilized one of
them [5, 19, 30, 27], which may obtain a suboptimal re-
sult. Peng et al. [21] firstly modeled them simultane-
ously, and more sophisticated methods have been proposed
[16, 10, 7, 26, 32]. Our work follows this line. We suggest
that while the information is indeed helpful, the key to the
final performance depends heavily on how we reasonably
model it.
Low-rank Modeling: For the information modeling, most
of previous low-rank models regularized the sum of the rank

along each mode of the constructed tensor [24, 16, 9, 26].
It is unreasonable to equally enforce low-rank constraint
along each mode, where the rank along each mode has clear
physical meanings and should be treated differently. More-
over, these low-rank based methods suffer from the consis-
tency issue due to patch/cubic aggregation.

In this work, we argue that the low-rank property of the
non-local self-similarity is much more superior to that of the
others (section 3.2). And we introduce the patch-free anal-
ysis prior from the spectral perspective to model the consis-
tency issue (section 3.4). We seek to design a unified frame-
work to jointly utilize the spectral and non-local similarity
information from mutually complementary priors.
Running Time: The running time is closely related to the
model, optimization, and implementation tricks. Due to the
large size of MSI, the running time for previous low-rank
tensor methods is usually long [16, 26]. We propose a sim-
ple yet effective model (section 3.4) with efficient optimiza-
tion strategies (section 3.5) to reduce the running time.

3. Hyper-Laplacian regularized unidirectional
low-rank tensor recovery model

3.1. Notations and preliminaries

In this paper, we denote tensors by boldface Euler script
letters, e.g., X . Matrices are represented as boldface capital
letters, e.g., X; vectors are expressed with boldface lower-
case letters, e.g., x, and scalars are denoted by lowercase
letters, e.g., x. The i-th entry of a vector x is denoted by
xi, element (i, j) of a matrix X is denoted by xij , and ele-
ment (i, j, k) of a 3-order tensor X is denoted by xijk. The
Frobenius norm of an N-order tensor X ∈ RI1×I2×···×IN is
the square root of the sum of the squares of all its elements,

i.e., ||X ||F =
√∑I1

i1=1

∑I2
i2=1 · · ·

∑IN
iN=1 x

2
i1i2···iN . Ten-

sor matricization, also named as unfolding or flattening,
is the process of reordering the elements of an N-order
tensor into a matrix. The mode-n matricization X(n) ∈
RIn×(I1···In−1In···IN ) of a tensor X ∈ RI1×I2×···×IN is ob-
tained by taking all the mode-n fibers to be the columns of
the resulting matrix. Thus, the n-rank of a given tensor can
be analyzed by means of matrix techniques. The rank of
the matrix unfolding X(n) is equal to the n-rank of X , i.e.,
rankn(X ) = rank(X(n)) [15].

3.2. Low-rank property in MSI

3.2.1 Limitation of the low-rank matrix model

In this section, we first illustrate why low-rank tensor recov-
ery model performs better than low-rank matrix recovery
model in MSI. As shown in Fig. 1, we provide three repre-
sentative examples to point out that low-rank matrix recov-
ery models for MSI denoising usually suffer from a prob-
lem: The obtained singular values are overshrunk, which
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Figure 1. Low-rank property comparison between matrix and ten-
sor. The first and second row illustrate the flowchart of spectral
and non-local self-similarity based low-rank matrix case, respec-
tively. The third row shows the flowchart of the unified low-rank
tensor case. The last column illustrates the corresponding singular
value sparsity and the overshrunk issue.

leads to a suboptimal solution.
To illustrate this, we applied the singular value decom-

position (SVD) on the constructed matrixes to analyze the
sparsity of the singular values of the clean image. We can
observe that the percentage of non-zero element of the sin-
gular values in the tensor case is much less (blue), indicating
that the intrinsic low-rank property of the constructed ten-
sor is superior to that of the matrix cases. Then, we carried
out an experiment by applying the singular value threshold-
ing [1] on the singular value of noisy constructed matrixes
(black) to discover how the estimated singular values (red)
distribute compared with the oracle (blue).

One can see that the estimated singular values of matrix
are deviated far from the oracle, especially in the spectral
correlation case, meaning that the overshrinkage is serious.
On the contrary, for the tensor case, the estimated singular
values are more similar to the oracle. Moreover, the tensor
format offers a unified understanding for the matrix-based
recovery model. When B = 0 or K = 0, the constructed
tensor degenerates into a matrix by taking only non-local
self-similarity or spectral correlation. These phenomena
motivate us to leverage the sparsity in tensor format for MSI
denoising.

3.2.2 Closer Look at the low-rank property of tensor

In conventional tensor sparsity measures, they extended the
2-order sparsity measure to higher-order case by simply
adding up rank along each modes. However, they neglected
a fact that the different n-ranks of a higher-order tensor are
not necessarily the same, indicating that the rank of each
mode is closely related to its intrinsic low-rank subspace.
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Figure 2. Low-rank property analysis of the constructed 3-order
tensor along each mode via HOSVD. (a)-(i) is the visualization
of singular values bigger than 1.5, bigger than 1 and smaller than
1.5, and overall bigger than 1 elements in the core tensor, respec-
tively. (d)-(f) is the mean profile of (c) across spatial, spectral, and
non-local self-similarity mode, respectively. (g)-(i) is the corre-
sponding denoising result via spatial, spectral, and non-local self-
similarity based low-rank tensor model, respectively.

To understand this, we explore the low-rank property
of each mode of a constructed 3-order tensor X i ∈
R49×350×31via HOSVD. We performed this experiment on
hundreds tensor, and chose one as a representative. In Fig.
2(a)-(c), we give a visual understanding how the singular
values distribute in the core tensor. Note that, most of small
singular values are trivial. We just choose the larger singu-
lar values as representative, which are generally associated
with the major projection orientations. In Fig. 2(d)-(f), we
show the mean profile of the core tensor across each mode1.

It is clearly observed that singular values of the core
tensor exhibit significant sparsity with different degrees
along each mode. Along the non-local self-similarity mode
(mode-2), due to the strong redundancy of the non-local cu-
bics, the coefficients tend to be decreasing extremely fast to
zeroes. While along the spatial and spectral mode, albeit
still approximately decreasing along the mode, most of the
coefficients are non-zeros. Consequently, the correspond-
ing denoising results are shown in Fig. 2(g)-(i). The result
obtained by unfolding along the non-local self-similarity
mode is much better than the others, since the sparser rep-
resentation allow the most improvement [2].

The observation in Fig. 2 has truthfully reflected the in-
trinsic difference of structure correlation along each mode.
The strong correlation across non-local self-similarity mode

1We slightly reordered the coefficients to be monotonically decreasing
for better visualization, while this does not change the sparsity.
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Figure 3. Effectiveness of spectral hyper-Laplacian prior in terms
of suppressing the ringing artifacts and preserving spectral geo-
metric structure. (a) Original image; (b) Simulated noisy image;
(c) Restored result without hyper-Laplacian; (d) Restored result
with hyper-Laplacian; (e) Fitting curves to the empirical distribu-
tion of spectral gradients; (f) Spectral reflectance at one location.

guarantees the low-rank property, while the subspaces along
the other modes may not be low-rank, especially when
it meets spectral inconsistency (mode-3) or spatial tex-
ture area (mode-1). Therefore, we argue non-local self-
similarity is the key property contributing to MSI denoising
performance, and should treat the rank along each mode dif-
ferently.

3.3. Unidirectional low-rank tensor recovery

The analysis above reveals that the structure correlation
along the non-local self-similarity mode is much stronger
than the spatial or spectral mode. The conventional low-
rank-based tensor recovery models that simply add up the
rank along each mode ignored the difference of the structure
correlation along each mode. Incorporating these weaker
correlations across spatial mode at high frequency local re-
gion or across spectral mode with low spectral similarity,
where the low-rank assumption cannot be met, may unex-
pectedly result in poor denoising results. Consequently, the
truthful information recovered via non-local self-similarity
mode may be lost, due to the aggregation procedure with the
inferior information recovered by spatial or spectral mode
(verified by the results comparing [26] with our method in
experiment).

To overcome this limitation, we propose a simple yet
effective unidirectional low-rank tensor recovery method,
in which only the low-rank constraint along the non-local
self-similarity direction is introduced, so as to reasonably
capture the intrinsic sparsity configurations inside the con-
structed tensor. This is in line with the rule of Ockham’s
razor: “Entities must not be multiplied beyond necessity”.
Mathematically, given a constructed noisy tensor X i ∈

RP 2×(K+1)×B , we want to estimate the clean tensor Li by
solving the following problem:

L̂i = argmin
Li

1

λ2i
||Li −X i||2F + rank2(Li), (1)

where rank2(Li) = rank(L(2)
i ) =

∑
j

∣∣∣σj(L(2)
i )
∣∣∣
1

[15, 8]
is the sum of the singular values of the tensor unfold along
the mode-2, σj(L

(2)
i ) means the j-th singular value of L(2)

i ,
λ2i denotes the noise variance of the corresponding con-
structed tensor. Compared with conventional tensor spar-
sity measures, the proposed unidirectional low-rank con-
straint has two remarkable advantages. On one hand, it can
more faithfully represent the structural correlation of the
constructed tensor, leading to better denoising result. On
the other hand, it significantly reduces the processing time
by cutting down the unnecessary computation burden of the
spatial and spectral low-rank constraint.

3.4. Hyper-Laplacian regularized low-rank tensor
recovery model

Although the low-rank tensor recovery methods have
achieved excellent results, they suffer from the common
consistency issue of pixels in overlapped regions, namely
the ring artifact [Fig. 3(c)], since they handled each cubic
independently and averaged the overlapped pixels. The pi-
oneer works, such as EPLL [35] and CSC [13] have been
proposed to address the problem in single image.

The spatial and spectral information are the two sides of
the same coin. In this paper, we solve this problem from
the spectral sparsity perspective by enforcing an analysis-
based hyper-Laplacian prior on the spectral gradient, so as
to reduce the artifacts in spatial domain meanwhile to better
preserve the spectral structure. As shown in Fig. 3(d), the
result with hyper-Laplacian term is free from ring artifact.

Moreover, the spectral hyper-Laplacian prior could fa-
cilitate to faithfully preserve the intrinsic spectral structure.
In Fig. 3(e), we have performed a statistical experiment
on CAVE dataset to show that the empirically spectral gra-
dient distribution (blue) is sparser than a Laplacian (pur-
ple) or Gaussian distribution (green), being well modeled
by a hyper-Laplacian. In Fig. 3(f), the recovery spectral in-
formation (red) is more similar to the original one (green)
compared with the non-hyper-Laplacian one (blue), which
further validates the spectral geometric structure preserving
ability of hyper-Laplacian term.

Thus, it is natural for us to incorporate both the unidi-
rectional low-rank tensor (1) and hyper-Laplacian term into
a whole image recovery model along with the constraint of
linear measurements:{

X̂ , L̂i

}
= arg min

X ,Li

1
2 ||X −Y ||2F + µ||∇zX ||p

+ω
∑
i

(
1
λ2
i
||RiX −Li||2F + rank2(Li)

)
,
(2)



where Y ∈ RM×N×B is the noisy data, RiX represents
the constructed tensor for each exemplar cubic,∇z denotes
the first-order forward finite-difference operator along the
z-axis (spectral direction), p(0 ≤ p ≤ 1) is the parameter to
control the sparsity of hyper-Laplacian, µ and ω are the reg-
ularization parameters. The basic idea of the model is that
the intrinsic subspace of the non-local self-similarity cubics
can be well depicted by the unidirectional low-rank tensor
prior, and meanwhile the hyper-Laplacian regularizes the
sparsity of spectral structure. This unified framework could
benefit from the combination of synthesis-based low-rank
prior and analysis-based hyper-Laplacian prior, yielding ar-
tifacts free result with faithful structure.

3.5. Optimization

Due to the difficulty of estimating multiple variables di-
rectly, we adopt the alternating minimization scheme to
solve the objective functional (2) with respect to the whole
image X and low-rank tensor Li per each location.

3.5.1 Low-rank tensor estimation: Li

In this subproblem, we fix the other variable X and opti-
mize the Li by with its tensor unfolding formation

L̂
(2)

i = argmin
L(2)
i

1

λ2i
||RiX(2) − L(2)

i ||
2
F + ||L(2)

i ||∗, (3)

where RiX(2) corresponds to the matrix of the unfolding
tensor RiX along the mode-2, ||L(2)

i ||∗ means the matrix
nuclear norm to replace rank(L(2)

i ) as its convex surrogate
functional. Equation (3) is a typical low-rank matrix ap-
proximation problem which has a closed-form solution and
can be easily solved by the singular values thresholding al-
gorithm [1]. In our implementation, we borrow the idea of
the reweighting strategy from [12] to improve the perfor-
mance. After each L(2)

i is obtained, the tensor folding is
performed to transform them into 3-order tensors.

3.5.2 Image restoration: X

We apply the alternative direction multiplier method [17]
by introducing auxiliary variable so as to split the original
complex problem into several easy subproblems.{

X̂ , D̂
}
= arg min

X ,D
µ||D||p +

α

2
||D −∇zX −

J
α
||2F

+
1

2
||X −Y ||2F + ω

∑
i

1

λ2i
||RiX −Li||2F ,

(4)
where D ∈ RM×N×B is an auxiliary variable, J is the
Lagrangian multiplier, α and is a positive scalar.
1) Update for D: Hyper-Laplacian. By ignoring terms
independent of D in (4), we obtain following subproblem:

D̂ = argmin
D

µ||D||p +
α

2
||D −∇zX −

J
α
||2F , (5)

which can be solved by conventional iteratively reweighted
least squares or look-up table for specific values of p. In
this work, we introduce the generalized iterated shrinkage
algorithm [36] for non-convex `p-norm minimization (5),
which is more efficient to implement, and converges to a
more accurate solution.
2) Update for X : Restoration. Similarly, dropping out the
irrelevant variable in (4), we can get the following subprob-
lem:

X̂= argmin
X

1
2 ||X −Y ||2F + α

2 ||D −∇zX −
J
α ||

2
F

+ω
∑
i

1
λ2
i
||RiX −Li||2F .

(6)

Generally, Eq. (6) is a quadratic optimization and can be
solved by Gauss-Seidel algorithm. In this work, since the
difference operator can be handled in Fourier transform
very fast, we further introduce the ADMM for splitting Eq.
(6) with subproblems that admit closed form solutions by
the n-D fast Fourier transform. The details can be found in
the supplementary material.

4. Experimental Results
4.1. Experimental setting

Our approach is compared with the comprehensive MSI
denoising methods: 1-D sparse representation based meth-
ods (SDS [14], ANLM [20]), 2-D low-rank matrix recovery
methods (LRMR [30], NMF [28]), state-of-the-art tensor
methods (BM3D [5], LRTA [22], BM4D [18], TDL [21],
ISTReg [26]). All the parameters are fine-tuned by default
or following the rules in their papers to achieve the best
performance. The Matlab code of proposed method can be
downloaded at the author’s homepage2.

The spatial and spectral quality of the denoising results
are very important for the subsequent processing, but is dif-
ficult to judge visually. In order to give an overall evalua-
tion, four quantitative quality indices are employed: PSNR,
SSIM, ERGAS [25], and SAM [29]. PSNR and SSIM are
two conventional spatial-based indexes, while ERGAS and
SAM are spectral-based evaluation indexes. The bigger
PSNR and SSIM values are, and the smaller ERGAS and
SAM values are, the better the restored images are.

We evaluate the competing methods on four representa-
tive datasets: Columbia Multispectral Database (CAVE)3,
Berkeley Segmentation Dataset (BSD)4, Harvard real-
world Hyperspectral Dataset (HHD)5, and Airborne Visi-
ble/Infrared Imaging Spectrometer Dataset (AVIRIS)6. The
CAVE and BSD are used for simulated experiments, while
the HHD and AVIRIS are used to test the real cases.

2http://www.escience.cn/people/changyi/index.html
3http://www1.cs.columbia.edu/CAVE/databases/multispectral/
4https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
5http://vision.seas.harvard.edu/hyperspec/index.html
6http://aviris.jpl.nasa.gov/data/



(a) Original Image (b) Noisy Image (e) LRTA(c) BM3D (d) SDS

(l) LLRT(h) NMF(g) ANLM

(f) LRMR

(k) ISTReg(i) BM4D (j) TDL
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Figure 4. Simulated random noise removal results at 510nm band of image Flower under noise level λ2=20 on CAVE dataset.

ATRL )e(egamI ysioN )b(egamI lanigirO )a( (c) BM3D (d) SDS (f) LRMR
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Figure 5. Simulated random noise removal results at 510nm band of image Toy under noise level λ2=50 on CAVE dataset.

4.2. Experimental results

Zero mean additive white Gaussian noises with differ-
ence variance are added to generate the noisy observations.
The visual results of single band in CAVE Flower and Toy
under different noise level are shown in Figs. 4 and 5, re-
spectively. Results on more noise levels can be found in
the supplementary material. Compared with other methods,
the LLRT exhibits more clear details in texture regions or
edges, meanwhile produce clean results in smooth regions
with higher PSNR values. The overall quantitative assess-
ment results by the competing denoising methods are shown
in Table 1. The LLRT achieves the best performance in all
quantitative assessments. Moreover, with the increasing of
noise level, the advantage of LLRT over other methods be-

comes bigger by a large marginal.
We show that multi-band images such as RGB images

also benefit from our method. We compare the proposed
method with WNNM [12], which handles the color image
in each channel, and state-of-the-art color image denoising
methods, such as LSCD [23], color BM3D (CBM3D) [4].
The visual result of color image Mushroom on BSD under
noise level λ2=40 are shown in Fig. 6. The quantitative
assessment results are shown in Table 2. Compared with
other competing methods, the proposed method could bet-
ter preserve the image details with less chrominance color
artifacts and highest PSNR values.

To demonstrate the robustness of our method, we show
in Fig. 7 a real AVIRIS image denoising result. It is shown
that the proposed method clearly outperformed the com-



Table 1. Quantitative results of differnent methods under several noise levels on CAVE dataset.
Sigma Index Methods

Noisy BM3D
[5]

SDS
[14]

LRTA
[22]

LRMR
[30]

ANLM
[20]

NMF
[28]

BM4D
[18]

TDL
[21]

ISTReg
[26]

LLRT

10

PSNR 28.13 42.09 39.74 41.36 39.27 41.52 43.15 44.59 44.30 45.77 46.67
SSIM 0.4371 0.9665 0.9484 0.9499 0.9094 0.9576 0.9702 0.9784 0.9797 0.9802 0.9872

ERGAS 236.40 45.06 61.86 49.53 64.81 47.78 39.65 33.33 34.86 30.53 26.74
SAM 0.7199 0.1395 0.2160 0.1719 0.3343 0.2184 0.1358 0.1295 0.1025 0.1086 0.0841

30

PSNR 18.59 36.40 32.10 36.15 31.36 34.77 36.53 38.90 39.03 40.51 41.55
SSIM 0.0988 0.9034 0.6709 0.8787 0.6451 0.8060 0.8565 0.9277 0.9486 0.9488 0.9683

ERGAS 709.29 88.29 145.88 91.40 157.65 104.95 86.25 65.38 63.54 53.05 48.20
SAM 1.0414 0.2489 0.5050 0.2479 0.6021 0.4376 0.2465 0.2598 0.1520 0.1374 0.1192

50

PSNR 14.15 32.66 25.32 32.44 26.67 30.74 31.98 35.96 36.42 37.75 38.93
SSIM 0.0432 0.8320 0.3451 0.7932 0.4000 0.6057 0.7113 0.8666 0.9175 0.9271 0.9521

ERGAS 1181.95 115.06 280.88 118.64 264.28 164.55 123.23 91.51 85.58 70.16 65.52
SAM 1.1741 0.2877 0.7006 0.2843 0.7534 0.5806 0.3148 0.3575 0.2000 0.1619 0.1424

100

PSNR 8.13 29.27 17.90 29.20 20.84 24.90 26.95 30.82 32.91 33.01 35.40
SSIM 0.0122 0.7460 0.1047 0.6945 0.1850 0.2826 0.4643 0.6956 0.8344 0.8648 0.9143

ERGAS 2364.05 171.94 693.94 175.91 469.26 324.48 225.55 141.18 128.22 120.77 98.91
SAM 1.3271 0.3938 0.9690 0.3381 0.9306 0.7972 0.4321 0.5014 0.3079 0.2376 0.1895

(a) Original (PSNR:dB) (b) Noisy (16.09) (c) WNNM (26.99) (d) LSCD (27.17) (e) CBM3D (28.03) (f) LLRT (28.32)

Figure 6. Simulated color image mushroom results under noise level λ2=40 on BSD dataset.

Table 2. Quantitative results of differnent methods under several
noise levels on BSD.

Sigma Index Methods
Noisy LSCD [23] CBM3D [4] LLRT

10 PSNR 28.13 33.85 35.90 36.04
SSIM 0.7020 0.9188 0.9501 0.9513

20 PSNR 22.17 30.26 31.85 32.00
SSIM 0.4580 0.8469 0.8923 0.8957

30 PSNR 18.58 28.22 29.69 29.87
SSIM 0.3223 0.7854 0.8402 0.8434

40 PSNR 16.08 27.00 28.10 28.50
SSIM 0.2388 0.7417 0.7872 0.7992

pared methods with better visual appearance and less vi-
sual artifacts. From the demarcated window, we can ob-
serve that the proposed method obtains clean image with
abundant edge structures.

4.3. Analysis and Discussion

Parameter setting. For the proposed method, the number
of the bands B and non-local cubics K are two important
parameters. In Fig. 8, we show the changes of the PSNR
and SSIM values in CAVE with the different numbers of
B and K, respectively. It is observed the denoising results
gradually become better with larger number of bands and
non-local cubics, and trend toward steady. We empirically
set K ∈ [200, 400], B ∈ [20, 40], and fix others p = 0.5,
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Figure 8. Effects of the numbers of bands and non-local cubics on
denoising results.

µ = 0.8, ω = 1 in all experiments.
Robustness to band inconsistency. Most of the low-rank
based methods rely on the assumption that the spectral
mode lie on the low-rank subspace, which may be violated
in real images [3]. To illustrate this, in Fig. 9, we show the
results of LRMR (a representative method utilizing spec-



(a) Noisy Image (c) SDS(b) BM3D

(j) LLRT(f) NMF

(d) LRMR (e) ANLM

(g) BM4D (h) TDL (i) ISTReg

Figure 7. Real random noise removal results on AVIRIS dataset.
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Figure 9. The robustness of LLRT method under the band incon-
sistency situation.

tral low-rank assumption) on a HHD image, in which the
original image of different band varies slowly. In the sec-
ond row, the LRMR introduces the spectral distortion ar-
tifact, namely false edge structure marked in the green el-
lipse. As for the result of proposed method, not only the
random noise is removed satisfactorily, but also the differ-
ent structural edges of each frame has been preserved well.

Computational efficiency. In Table 3, we compare
the computational efficiency with the other low-rank ma-
trix/tensor algorithms: TDL [21], LRMR [30], RLRTR
[16], ISTReg [26]. Our method is faster than the tensor-
based low-rank methods, such as RLRTR, ISTReg. The
non-local self-similarity searching and optimization proce-
dure contribute most of the processing time. For the non-

Table 3. Running time comparison (In seconds)
size TDL[21] LRMR[30] RLRTR[16] ISTReg[26] LLRT

512*512*31 61 303 2646 2103 1093

local similarity cubic matching, we propose to average each
band of the cubic, which can be regarded as a uniform fil-
tering procedure. Matching processing is performed on the
“clean” 2-D matrix which could significantly reduce com-
putational load and improve matching accuracy. The k-
mean++ introduced by TDL [21] excellently speeds up the
non-local patch searching, making it much faster than that
of the others. For the optimization procedure, we split the
original problem into several subproblems with closed-form
solution, either via n-D FFT or fast shrinkage operation,
which requires only a few operations per element.

5. Conclusion
As the proverb goes, every advantage has its disadvan-

tage. The spatial and spectral information in MSI offer
abundant structure correlations, while the processing time
increases rapidly. Based on the analysis of the structure cor-
relations in MSI and their effects on denoising performance,
we have proposed a simple yet effective hyper-Laplacian
regularized unidirectional low-rank tensor recovery method
that not only truthfully represents the structure correlation
but also reduces the processing time. Moreover, the global
hyper-Laplacian prior is introduced to avoid the consistency
issue from the spectral smoothness perspective. The pro-
posed method has been tested on several MSI datasets, and
it consistently outperformed the competing approaches.
Acknowledgements. This work was supported by the
projects of the National Natural Science Foundation of
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[20] J. V. Manjón, P. Coupé, L. Martı́-Bonmatı́, D. L. Collins, and
M. Robles. Adaptive non-local means denoising of mr images with
spatially varying noise levels. J. Magn. Resonance Imag., 31(1):192–
203, 2010.

[21] Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang. Decom-
posable nonlocal tensor dictionary learning for multispectral image
denoising. In CVPR, pages 2949–2956, 2014.

[22] N. Renard, S. Bourennane, and J. Blanc-Talon. Denoising and di-
mensionality reduction using multilinear tools for hyperspectral im-
ages. IEEE Geosci. Remote Sens. Lett., 5(2):138–142, 2008.

[23] M. Rizkinia, T. Baba, K. Shirai, and M. Okuda. Local spectral
component decomposition for multi-channel image denoising. IEEE
Trans. Image Process., 25(7):3208–3218, 2016.

[24] B. Romera-Paredes and M. Pontil. A new convex relaxation for ten-
sor completion. In NIPS, pages 2967–2975, 2013.

[25] L. Wald. Data fusion: definitions and architectures: fusion of images
of different spatial resolutions. Presses des MINES, 2002.

[26] Q. Xie, Q. Zhao, D. Meng, Z. Xu, S. Gu, W. Zuo, and L. Zhang.
Multispectral images denoising by intrinsic tensor sparsity regular-
ization. In CVPR, pages 1692–1700, 2016.

[27] Y. Xie, Y. Qu, D. Tao, W. Wu, Q. Yuan, and W. Zhang. Hyperspectral
image restoration via iteratively regularized weighted schatten-norm
minimization. IEEE Trans. Geosci. Remote Sens., 54(8):4642–4659,
2016.

[28] M. Ye, Y. Qian, and J. Zhou. Multitask sparse nonnegative matrix
factorization for joint spectral–spatial hyperspectral imagery denois-
ing. IEEE Trans. Geosci. Remote Sens., 53(5):2621–2639, 2015.

[29] R. H. Yuhas, J. W. Boardman, and A. F. Goetz. Determination of
semi-arid landscape endmembers and seasonal trends using convex
geometry spectral unmixing techniques. In Summaries of the 4th
Annual JPL Airborne Geoscience Workshop, 1993.

[30] H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan. Hyperspectral im-
age restoration using low-rank matrix recovery. IEEE Trans. Geosci.
Remote Sens., 52(8):4729–4743, 2014.

[31] L. Zhang, W. Wei, Y. Zhang, F. Li, C. Shen, and Q. Shi. Hyperspec-
tral compressive sensing using manifold-structured sparsity prior. In
ICCV, pages 3550–3558, 2015.

[32] L. Zhang, W. Wei, Y. Zhang, C. Shen, A. van den Hengel, and Q. Shi.
Cluster sparsity field for hyperspectral imagery denoising. In ECCV,
pages 631–647, 2016.

[33] J. Zhao, Y. Zhong, H. Shu, and L. Zhang. High-resolution im-
age classification integrating spectral-spatial-location cues by condi-
tional random fields. IEEE Trans. Image Process., 25(9):4033–4045,
2016.

[34] Q. Zhao, D. Meng, X. Kong, Q. Xie, W. Cao, Y. Wang, and Z. Xu. A
novel sparsity measure for tensor recovery. In ICCV, pages 271–279,
2015.

[35] D. Zoran and Y. Weiss. From learning models of natural image
patches to whole image restoration. In ICCV, pages 479–486, 2011.

[36] W. Zuo, D. Meng, L. Zhang, X. Feng, and D. Zhang. A generalized
iterated shrinkage algorithm for non-convex sparse coding. In ICCV,
pages 217–224, 2013.



Supplementary Material for “Hyper-Laplacian Regularized Unidirectional
Low-rank Tensor Recovery for Multispectral Image Denoising”

1. Solution to Problem (6) in Main Text
The original problem is shown as follow:

X̂ = argmin
X

1

2
||X −Y ||2F +

α

2
||D −∇zX −

J
α
||2F + ω

∑
i

1

λ2i
||RiX −Li||2F . (1)

The main difficulty for the Fourier transform in (1) lies in the fact that X is involved with the cubic operation Ri. Thus, it
is natural for us to split the X in the third term from other terms. We introduce another auxiliary variable Z , by applying
ADMM to (1), we obtain{

X̂ , Ẑ
}
= argmin

X ,Z

1

2
||X −Y ||2F +

α

2
||D −∇zX −

J
α
||2F + ω

∑
i

1

λ2i
||RiZ −Li||2F +

β

2
||Z −X − J 1

β
||2F , (2)

where Z ∈ RM×N×B is an auxiliary variable, J 1 is the Lagrangian multiplier, β and is a positive scalar. The optimization
of (2) consists of the following iterations:

X (l+1) = argmin
X

1

2
||X −Y ||2F +

α

2
||D −∇zX −

J
α
||2F +

β

2
||Z(l) −X − J (l)

1

β
||2F ,

Z(l+1) = argmin
Z

ω
∑

i

1

λ2i
||RiZ −Li||2F +

β

2
||Z −X (l+1) − J 1

β
||2F ,

J (l+1)
1 = J (l+1)

1 + β(l)(X (l+1) −Z(l+1))

β(l+1) = ρβ(l+1),

(3)

where ρ > 1 is a constant. Thus the variables X and Z can be solved with closed-form solution efficiently:

X (l+1)=F−1

F
(
Y +∇T

z (α
(l)D −J ) + (β(l)Z(l) −J (l)

1 )
)

1 + α(l)(F(∇z))
2
+ β(l)

 (4)

Z(l+1)=
(
2λ2i

∑
i
RT

i Ri + β(l)I
)−1

×
(
2λ2i

∑
i
RT

i Li + β(l)X (l+1) +J (l)
1

)
(5)

where F (•) denotes the n-D fast Fourier transform and F−1 (•) the inverse transform, I is the identity tensor, RT
i Ri

means the number of overlapping cubics that cover the pixel location, and RT
i Li means the sum value of all overlapping

reconstruction cubics that cover the pixel location. Thus, Eq. (4) can be computed in Fourier domain and Eq. (5) can be
computed in pixel-to-pixel level division with tensor format. In fact, the two auxiliary variables D in main text and Z in this
supplementary can be introduced at the same time, without any sequence. Due to the page limitation, we place the solution
of Z in the supplementary.

2. Extension to LLRT-RPCA
As the reviewers concerned, the real noises in HSI are always complex with more than random noise. Indeed, the stripe

line noise is another issue, which usually coexists with the random noise. To some degree, once the stripe arises in the HSI,

1



Algorithm 1 The hyper-Laplacian regularized unidirectional low-rank tensor (LLRT) algorithm
Require: Input image Y

1: Initialize:
2: • Set parameters µ, α, ω and the noise level;
3: • Set J(1) = 0, J(1)

1 = 0;
4: • Similar cubics grouping for each target cubic to form the 3-order tensor;
5: for n=1:N do
6: obtain Li by solving Eq. (3)(main manuscript);
7: for (Solving Eq. (4)(main manuscript)) l=1:L do
8: Solve Eq. (5) for D(l+1)(main manuscript);
9: Solve Eq. (3) for X (l+1) and Z(l+1)(Supplementary);

10: end for
11: If mod(n, T)=0, update cubic grouping;
12: Output the clear image X if n = N.
13: end for
Ensure: Clean Image X .

it is more urgent to remove them than the random noise. In recent years, the stripe noise removal has received more and
more attention. For [5, 1, 3], this kind of methods hold the point that the stripe line is an structure noise, and introduce
the mixture of Gaussians (MoG) noise assumption also its variants to adapt the real noise characteristics of natural HSI, so
as to accommodate various noise shapes encountered in real applications. Another research direction starts from the image
decomposition perspective [7, 4, 2], in which the stripe noise is regarded as an structural line pattern component, equally
treated with the image component. Our LLRT-RPCA method follows the image decomposition manner. Thus, the problem
can be transferred to how to construct two reasonable measurements to differ the image component from the stripe component.
In the main paper, we have given the detailed analysis about the key prior for the MSI image component modeling. And the
focus of this paper is to address the image modeling issue. As for the stripe component modeling, it is out the scope of this
work. The relevant work has been submitted recently. Interested readers may keep an eye on our future work. Here we just
introduce the common used L1 norm for the stripe component, just as the classical RPCA [6] regularizing the gross error:{

X̂ , L̂i, Ê
}
= arg min

X ,Li,E

1

2
||X + E −Y ||2F + µ||∇zX ||p + ω

∑
i

(
1

λ2i
||RiX −Li||2F + rank2(Li)

)
+ τ ||E||1, (6)

where E represents the gross error namely the stripe noise, and τ is the regularization parameter. The optimization is similar
to that of LLRT, with additional step for the gross error E .

3. More results
In this document, we present more noise removal results, which are not included in the main paper due to page limit.

3.1. Simulated Experimental Results

Figure 1 to Figure 5 present five visual comparison results of various methods on simulated hyperspectral and color images
under different noise levels. From the visual results, we can observe that the proposed LLRT method consistently obtains
the best performance in terms of both finer-grained textures and coarser-grained structures for different multispectral images.
For the quantitative results, LLRT outperforms the second best results ISTReg by a large marginal. In Fig. 6, we plot the
PSNR values of each band of one single image cloth. In Fig. 7, we plot the average PSNR values of all bands of each image.
For each band and each image, our method consistently obtains the best result.

3.2. Real Experimental Results

Figure 8 and Figure 9 present two visual comparison results of various methods on real hyperspectral and color image,
respectively. It can be observed that the images restored by our method are more visually pleasant with more detailed
information and less color distortion artifact. Further, we test the LLRT-RPCA method on the mixed noisy HSI dataset
Urban, and the results are shown in Fig. 10.



3.3. The Analysis of Tensor Low-rank Prior Along Each Mode

The non-local patch number dimension is more evidently low-rank (here we give another example image clay as shown
in Fig. 11), and neglecting others can help improve efficiency. However, it might be not so rational that neglecting other
useful low-rankness along other dimensions, especially in spectrum, can help improve MSI recovery quality. In our paper,
we capture the most low-rank subspace along the non-local mode. Here, we give a detailed comparison of the combination
of low-rank prior along each mode, as shown in Fig. 12. Here, we have following observations.

• For single mode-based low-rank prior (red, purple, green curve), we can find that the non-local self-similarity mode
achieved the best performance, which further validates the conclusion in the main paper: the structure correlation
along the non-local self-similarity mode is much stronger than that of the spatial or spectral mode.

• The spatial mode low-rank always bring negative influence to the final performance (compare purple and cyan, also
grey and blue), since we have stated in the main paper that their low-rank assumptions cannot be met.

• The spectral mode low-rank does facilitate the final recovery result (compare purple and grey). That is to say the
spectral correlation spectral correlation property can facilitate the MSI recovery results.

• In this work, we introduce the patch-free hyper-Laplacian prior to model the spectral correlation. The grey (nonlocal
+ spectral low-rank) and yellow (proposed hyper-Laplacian regularized nonlocal low-rank) curves have achieved the
best two performances. However, the processing time of the proposed method is much less than that of the grey curve,
since the additional SVD operation occupied much of the processing time.

From the above analysis, we can conclude that the non-local self-similarity is the key property contributing to MSI denoising
performance, and the spectral correlation property does facilitate the final recovery result. Our focus is not about the specific
priors but why and how we use them in reasonable manner for MSI modeling. Here, we choose the hyper-Laplacian to model
the spectral correlation not the low-rank, is for one hand to reduce the processing time, and for the other hand to suppress the
visual ringing artifact.
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(a) Original Image (b) Noisy Image (c) BM3D (d) SDS
(PSNR, SSIM) (28.13, 0.4223) (42.47, 0.9685) (39.54, 0.9459)

(e) LRTA (f) LRMR
(40.62, 0.9385) (39.60, 0.9012)

(h) NMF(g) ANLM
(42.03, 0.9590) (43.25, 0.9665)

(l) LLRT(k) ISTReg(i) BM4D (j) TDL
(45.49, 0.9817) (44.36, 0.9795) (46.85, 0.9881)(45.30, 0.9830)

Figure 1. Simulated random noise removal results at 510nm band of image Food under noise level λ2=10 on CAVE dataset.



(a) Original Image (b) Noisy Image (c) BM3D (d) SDS
(PSNR, SSIM) (18.58, 0.2186) (29.46, 0.7469) (29.89, 0.7233)

(e) LRTA (f) LRMR
(30.60, 0.7557) (30.12, 0.7436)

(h) NMF(g) ANLM
(30.80, 0.7857) (32.86, 0.8447)

(l) LLRT(k) ISTReg(i) BM4D (j) TDL
(33.31, 0.8761) (33.39, 0.8841) (35.71, 0.9221)(34.06, 0.8887)

Figure 2. Simulated random noise removal results at 510nm band of image Cloth under noise level λ2=30 on CAVE dataset.



(a) Original Image (b) Noisy Image (c) BM3D (d) SDS
(PSNR, SSIM)  (8.13, 0.0285) (26.38, 0.7087) (18.24, 0.1799)

(e) LRTA (f) LRMR
(26.70, 0.6587) (21.66, 0.3131)

(h) NMF(g) ANLM
(24.60, 0.4129) (26.72, 0.5506)

(l) LLRT(k) ISTReg(i) BM4D (j) TDL
(29.27, 0.7779) (29.30, 0.8181) (31.06, 0.8813)(29.76, 0.8540)

Figure 3. Simulated random noise removal results at 510nm band of image Watercolor under noise level λ2=100 on CAVE dataset.



(a) Original (PSNR:dB) (b) Noisy (22.11) (c) WNNM (29.60)

(d) LSCD (30.57) (e) CBM3D (31.66) (f) LLRT (31.93)

Figure 4. Simulated color image Fox results under noise level λ2=20 on BSD dataset.

(a) Original (PSNR:dB) (b) Noisy (18.59) (c) WNNM (26.53)

(d) LSCD (26.68) (e) CBM3D (28.54) (f) LLRT (28.91)

Figure 5. Simulated color image Building results under noise level λ2=30 on BSD dataset.
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Figure 6. PSNR values of each band of image Cloth under noise level λ2=30 on CAVE dataset.
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Figure 7. Average PSNR values of all bands of each image under noise level λ2=30 on CAVE dataset.



(a) Noisy Image (c) SDS(b) BM3D

(j) LLRT(f) NMF

(d) LRMR (e) ANLM

(g) BM4D (h) TDL (i) ISTReg

Figure 8. Real random noise removal results at 430nm band of image Walls on HHD dataset.

(a) Noisy (b) WNNM (c) LSCD (d) CBM3D (e) LLRT 

Figure 9. A real color image noise removal results.



(a) Noisy Band 204 (b) BM4D

(e) TDL

(c) PARAFAC (d) ANLM

(f) LRMR (g) MoG (h) LLRT-RPCA

Figure 10. A real HSI mixed noisy removal results.
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Figure 11. Low-rank property analysis of the constructed 3-order tensor along each mode via HOSVD.
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Figure 12. Effectiveness of low-rank prior along each mode and their combination.
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