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Moving Object Detection (MOD) aims at extracting foreground moving objects in videos from static cameras.
While low-rank based approaches have achieved impressive success in theMOD task, their performance remains
limited on dynamics background scenes. Themain reason is that dynamic clutters, e.g., swaying leaves and rippers,
are easy to mix up with moving objects in the decomposition model which simply classify the sparse noise as
foregrounds. In order to improve the generalization ability of low-rank based moving object detectors, we sug-
gest adding an explicit dynamic clutter component in the decomposition frameworkwith realistic dynamic back-
ground modeling. Then the dynamic clutter can be learned through object-free video data due to their self-
similarity across time and space. Thus, the moving objects can be naturally separated by a tensor-based decom-
position model which formulates the static background by a unidirectional low-rank tensor, learns the dynamic
clutter by a two-stream neural network, and constrains moving objects with spatiotemporal continuity. To fur-
ther provide amore accurate object detection result, an objectness prior is embedded into ourmodel in an atten-
tion manner. Extensive experimental results on the challenging datasets of dynamic background clearly
demonstrate the superior performance of our model over the state-of-the-art in terms of quantitative metrics
and visual quality.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

We explore a problem of weakly-supervised moving object detec-
tion, where the task is to extract single or multiple moving objects in
videos from static cameraswith only providing a few object-free frames
in the same sequence. Such a formulation of moving object detection
[1–4] is attractive because it has been discarded heavy pixel-wise label-
ing and the object-free frames can be readily obtained in practical appli-
cations. This task plays an important role in computer vision such as
video surveillance [5], traffic monitoring [6], etc. Due to the temporal
correlation of video data, low-rank based approaches have achieved im-
pressive success in the literature [1,7,8]. The problem is usually formu-
lated as follow:

D ¼ B þ F þN , ð1Þ

whereD ∈ℝH�W�T is the input video,B is the static background,F is the
moving foreground, and N is the random noise. These methods [9,10]
usually assume the background is low-rank due to the similarity of
temporal space, and consider the foreground as sparse noise. However,
these solutions often fail on the dynamic background scenes, e.g.,
swaying leaves or rippers, since these dynamic variations caused by
backgroundhave similar sparse and changeable propertieswithmoving
objects, thus resulting in ambiguities on sparse noise aswell as poor de-
tection results. An example is illustrated in Fig. 1(a).

To handle this issue, existingmethodsmainly start from three differ-
ent perspectives respectively: foregrounds F , noiseN , and background
B. An intuitive idea to differentiate foregrounds and dynamic clutter is
that moving objects F often have spatial continuity and smooth move-
ments in temporal space in contrast to the randomness of dynamic
background variations, thus a lot of works [11–14] focus on modeling
these properties by constraining foregrounds with total variation
[12,15], MRF [14], segmentation [16], structural sparse [11,17], or
block sparsity [18,19] regularization. However, this assumption is vio-
lated when the object size is small or the dynamic clutter (e.g., fountain)
exhibits structural and smooth properties in the spatiotemporal
domain.

Another research line [20–22] regards the dynamic clutter as struc-
tural noise, and thus model it into the noise N , or mixed noise both N
and sparse error noise F . They introduce the Mixture of Gaussian
(MoG) to model the multiple modalities of the complex ‘noises’.
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Fig. 1. An example of video decomposition models of dynamic background videos. From left to right: video data, low-rank based decomposition model, proposed model. (a), the sparse
characteristic of dynamic cluttermakes it differentiating from foregroundsmuch difficult in the low-rank basedmodel. (b), to address this issue, we present a novel decompositionmodel,
where the dynamic clutter is modeled explicitly. The additional dynamic clutter modeling facilitates us to decouple the moving objects from dynamic backgrounds.
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However, the distributions of themoving object foreground and the dy-
namic clutter vary with different scenes, thus it is very hard for the
Gaussian models to accommodate such complex mixed noise. A few
methods [7,23] take the dynamic clutter background into the static
background B. They resort to the higher-order low-rank technique
[23,24] to directly describe a background scene with dynamic textures,
or utilize tensor nuclear norm representation [7] to accommodate the
background variation. Unfortunately, this would inevitably result in
spatial distortion.

To avoid the confusion between dynamic clutter and foregrounds,
we start from the idea of keeping each component simple, and propose
a novel tensor-based video decomposition framework to Learn Dy-
namic Background (LDB),which additionallymodel the dynamic clutter
explicitly, as shown in Fig. 1(b). The separated dynamic clutter makes
the representation of both the static background and moving object
foreground easier andmore precise, as well as the dynamic background
clutter itself. On the one hand, the dynamic clutter can be regarded as a
Fig. 2. The overview of the proposed approach. Our approach ismainly based on the video deco
and Moving Foregrounds. The dynamic clutter is explicitly represented by a learned context-aw
discriminative prior, the unifiedMAP framework can be solved by the alternatingminimization
rank) and moving foregrounds (3D MRF).
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specific structural noise, and learned from a single video by considering
one object-free video sequence itself as a dataset. On the other hand, the
foreground can be extracted based on the MAP framework with the in-
tegration of data-driven discriminative prior for explicit dynamic clutter
modeling. The overview of our approach is shown in Fig. 2. To complete
the framework, we introduce the low-rank tensor approximation to ex-
ploit spatiotemporal correlations of the background, aswell as a 3DMRF
regularization for constraining the continuity of the foregrounds in spa-
tial and temporal space. Furthermore, an objectness prior mask is
served as adaptive guidance for the dynamic clutter component to im-
prove the detection results. The contributions of our approach are
four-folds:

• We formulate moving object detection as a novel tensor-based video
decomposition framework, consisting of the static background, mov-
ing foregrounds and dynamic clutter. To the best of our knowledge,
we are the initial work to model the dynamic clutter explicitly.
mposition framework consisting of three components: Static Background, Dynamic Clutter
are two-stream CNN in a weakly supervised manner. Incorporated with this data-driven

algorithm iteratively, with the regularization on the static background (unidirectional low-
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• We introduce a data-driven discriminative prior represented by a spa-
tiotemporal two-stream CNN for dynamic clutter, which could better
approximate the complex distribution of the clutter. The prior is em-
bedded into the MAP framework with an efficient alternating algo-
rithm to solve it.

• We further enhance the proposed method by incorporating an
objectnessmask of the static andmoving objects, functioning as an at-
tentionmap to adaptively differmoving objects from dynamic clutter.

• Extensive results demonstrate that the proposed algorithm outper-
forms the state-of-the-art methods both quantitative and qualitative
in dynamic scenes.Moreover, the generalization ability of ourmethod
is validated in other challenging conditions, such as noises and rains.

2. Related work

Video Decomposition: In recent years, the low-rank matrix
recovery [9,10,13,14,25,26] and tensor-based recovery methods
[7,12,15,27,28] have been widely used and achieved state-of-the-art
performance for moving object detection, where they split the input
video into the low-rank approximation of background component and
a sparse error of foreground component based on the Eq. (1). However,
the classical RPCAmethod is vulnerable to the dynamic background var-
iations, due to the violation of the low-rank assumption [9]. From the
noise modeling viewpoint, Meng et al. [20] proposed to treat dynamic
clutter as a special structural noise, and introduced the mixture of
Gaussian (MoG) to accommodate the complex distribution of the
mixed random N and clutter noise. A lot of works follow this research
line [21,22]. Another research direction tends to model the dynamic
clutter alongwith the foreground objectF , since both of them aremov-
ing and structural sparse. Cao et al. [12] introduced the conventional L0
for both the dynamic clutter and foreground object, which implicitly
assumed that they were sparsely distributed in the video. However,
such an implicit modeling manner for dynamic clutter would increase
the difficulty of differentiating it from the other components. In
this work, we propose to explicitly model the dynamic clutter, and
additionally incorporate the dynamic clutter into the degradation
model Eq. (1) (Section 3.1) which would significantly reduce the
difficulty of the model each term.

Spatiotemporal Representation: The success of the video decom-
position depends greatly on the representation of each term. Most of
the existing methods follow the conventional RPCA model and start
from the 2D low-rank matrix methods [9]. Both the low-rank matrix
recovery [13,18,28] and the matrix factorization [29–31] handle the
video decomposition problem from the 2D perspective. However,
transforming the 3D video into a matrix would unexpectedly cause
damage to the spatiotemporal structural correlation. The latest works
consistently indicate that the tensor-based methods substantially pre-
serve the intrinsic structure correlation with better results, such as the
background subtraction [7,32], video completion [33–35], multispectral
image restoration [36]. Hu et al. [7] proposed a tensor-based low-rank
and saliently fused sparse decomposition model with better perfor-
mance. In this work, we propose a unidirectional low-rank tensor
prior to model the spatiotemporal correlation of the static background
(Section 3.3), and 3D MRF to model the spatiotemporal continuity of
the moving object (Section 3.4).

CNNs for Discriminative Prior:Most previousmethodsmake use of
the hand-crafted priors [7,12] for each component. However, it is ex-
tremely hard to provide an accurate mathematical expression to fit
the complex distribution of the dynamic clutter, since the distribution
of it is usually non-Gaussian or non-Laplacian. Recently, CNN has re-
ceived great success in both low-level and high-level vision tasks. Com-
pared with the hand-craft priors, CNN could perfectly fit any regular
components, such as the structural noise [37], snow and rain [38], guar-
anteed by the universal approximation theory [39]. In this work, to the
best of our knowledge, this is the first time the discriminative CNN is
3

introduced to model the dynamic clutter (Section 3.2), and has been
embedded into the MAP framework for (Section 3.5) for better perfor-
mance.

CNNs for Background Modeling: Several recent papers introduce
end-to-end CNNs to learn background in a supervised manner, which
could be divided into video-optimized [40–43] and video-agnostic
[44,45] categories. The first category [41,42] trains and tests on the
same set of videos, obtaining astonishing performance, but suffers
from severe overfitting and inevitably fails when transferring into new
scenes. The second category [44,45] tries to eliminate the overfitting
by training and testing on different sets of videos, while these methods
still rely on pixel-wise annotations on many sequences, and are sensi-
tive to the training/testing split and sematic prior. In contrast to these
algorithms, our method does not require pixel-wise annotations, thus
would significantly reduce labeling burdens, and has a better generali-
zation ability and stability than deep learning based methods, which
would be discussed in the experiments.

3. Proposed method

3.1. The tensor decomposition model

To decouple the dynamic background and moving objects, we pro-
pose a novel video decomposition model that separates the dynamic
clutter from the data. For a video sequence tensor D ∈ℝH�W�T , the
model is formulated as follow,

D ¼ B þ F þ C þN , ð2Þ

where B; F ; C;N ∈ℝH�W�T denote static background, moving fore-
ground, dynamic clutter and Gaussian noise tensor respectively. Com-
pared with Eq. (1), we additionally introduce a dynamic clutter term C
in an explicit manner, which represents the dynamic background varia-
tions. Our goal is to decompose the static background B, the moving
foregroundF and the dynamic clutter C from the input videoD. To solve
this ill-posed problem, we need to analyze the priors of B, F and C, and
then introduce the corresponding regularizers, which will be discussed
in the next subsections.

3.2. Dynamic background: Two-stream CNN

In this section, wefirst illustrate the reason for choosing convolutional
neural networks to model the dynamic clutter, then the architecture of
proposed two-stream spatiotemporal CNN and the details of annotation
generation are described in the following subsection.

3.2.1. Why CNN modeling for dynamic clutter?
Existing moving object detection methods often assume a probabil-

ity distribution for dynamic background clutter, such as Gaussian noise
[10] (i.e., L2-norm), sparse error [12] (i.e., L1-norm) and Mixture of
Gaussian [22]. Such assumption is substantiated to be effective in
some video sequences, however, still insufficient to fit complex
dynamic background in real scenes.

To understand it, we show three typical complex dynamic clutters in
Fig. 3. It can be observed that the dynamic clutter, like swaying leaves
and fountain, has strong structural property varying from scene con-
texts, and their distributions are quite complex and diverse. Here, we
select an effective algorithm, OMoGMF [22], tomodel the dynamic clut-
ter by theMixture of Gaussian (MOG). Even thoughMoGhas a good ap-
proximation capability to a wide range of distribution, a gap between
the estimated results and the ground truth can be observed easily in
Fig. 3. The phenomenon reflects that current generative models are dif-
ficult to handle diverse complex background variations.

On the contrary to these methods, we introduce a context-aware
learning prior to model the distribution of dynamic clutter. CNN, as
well known for its powerful representation capability, is a natural choice



Fig. 3. A comparison of dynamic clutter estimation between OMoGMF [22] and proposed CNN on three videos. From left to right: ground truth of dynamic clutter, estimated results of
OMoGMF, our results, and corresponding distributions of them. Clearly, ourmodel has amore powerful ability tohandle the complex and changeable distribution of dynamic clutter, rather
than the mixture of Gaussian.
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for the problem. Therefore, we design a two-stream spatiotemporal
CNN tomodel the dynamic clutter. As shown in Fig. 3. the results of pro-
posed CNN (the third column) are quite similar to the ground truth (the
first column) in visual, and the last column shows that the distribution
of proposed CNN is much closer to the ground truth, compared with
OMoGMF.
3.2.2. Two-stream spatiotemporal CNN
To model the dynamic clutter efficiently, both appearance and mo-

tion information are utilized in our model. We construct two branches
to incorporate spatial and temporal information: one branch is to ex-
tract appearance features of the target frame It, and another branch
can obtain the motion feature. Since the camera is static, the simple
difference of consecutive frames is sufficient to represent motion
characteristics of dynamic variations, thus we formulate It+1 − It as
the input of motion branch. The architecture of each branch is based
on a patch-based denoising network [46] due to self-similarity across
time and space, which removes the last convolution layer for noise es-
timation. Fused by the features from two branches, the network could
estimate the dynamic clutter of each frame, i.e. fCNN(It, It+1), where
fCNN denotes the prediction of proposed two-stream spatiotemporal
CNN. The detail of proposed CNN can be found in supplementary
materials.

An important problem is that we have no annotations of dynamic
clutter. To solve the problem, We introduce a weakly supervised strat-
egy to generate annotations from object-free background frames,
which are usually available due to the redundancy of video sequence.
For each video, we select around 200 consecutive object-free back-
ground frames manually. These frames do not contain moving
foregrounds, but show a strong dynamic property of background
variations.We performRPCAalgorithm to extract the dynamic variation
of these background frames. The obtained sparse error is regarded as
the ground truth of dynamic clutter. Due to the temporal consistency
of clutter, the learned network could model the distribution of whole
sequences. It is worth noting that there is no overlap between training
and testing frame sets.
4

3.3. Static background: Low-rank tensor

Since we decouple the dynamic clutter from background explicitly,
the remaining static background should be unchanged. Thus, we
model the static background in a low-rank tensor. Notably, the low-
rank property of static background tensor is anisotropy, where the spa-
tial dimensions have no similar low-rank property with temporal, as
shown in Fig. 4. For this reason, we only apply temporal dimensional
low-rank constraint on static background tensor. Mathematically,
given a static background tensor B ∈ℝH�W�T , we define the unidirec-
tional rank as rank3 BÞð , where rank3 Bð Þ ¼ rank B3ð Þ ¼∑ jjσ jðB3Þj1
[47,48] is the sum of the singular values of the tensor unfolded along
the temporal dimension, B3 is the mode-3 unfold matrix of B, and σj

(B3) means the j-th singular value of B3.
3.4. Moving foreground: 3D MRF

Formoving foreground, the hypothesis is that foreground objects are
contiguous and sparse in spatial and temporal space. Thus we use Mar-
kov Random Field (MRF) [49,50] to model the probability and correla-
tions of foreground pixels.

Define a graph G ¼ V, Eð Þ, where V is the set of vertices denoting all
H×W× T pixels in the video frames and E is the set of edges connecting
spatial and temporal neighboring pixels respectively. The constructed
graph is shown in Fig. 5. Similar to [14], we define a binary tensor

S ∈ 0, 1f gH�W�T as the foreground support,

Sijk ¼
1, if pixel ij at frame k is foreground
0, otherwise:

�
ð3Þ

We set the weights of pairwise edges on spatial and temporal are
constant, i.e. ωs = η, ωt = θ. And the unary probability is β when
Sijk=1. Thus the energy of moving foreground



Fig. 4. Low-rank property analysis of video tensor along each dimension viaHOSVD. From left to right is themean profile of singular values bigger than 5 elements in the core tensor and
reconstructed images across spatial x, spatial y, and temporal dimension, respectively. The video tensor exhibits unidirectional low-rank property.
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ort can be written as follow,

E Sð Þ ¼ β jjSjj1 þ η
X

ijk;mnkð Þ∈Es
Sijk−Smnk

�� ��þ θ
X

ijk;ijtð Þ∈Et
Sijk−Sijt
�� ��; ð4Þ

where Es, Et are edges of spatial and temporal neighborhoods. The
hyper-parameters β penalizes the Sijk=1, and η, θ reflect the
importance of spatial and temporal continuity. Thus the sparsity and
spatiotemporal continuity are modeled in the energy function of MRF,
which can be integrated into the unified framework to solve the prob-
lem.

3.5. Formulation

Based on the modeling of three components aforementioned, our
moving object detection method builds on Learning Dynamic Back-
ground (LDB), which is formulated as:

min
B;C;Sijk∈ 0;1f g

1
2
jjPS⊥ D−B−Cð Þjj2F þ αrank3 Bð Þ þ βE Sð Þ

þ γ M∘ jjC− f CNN Dð Þjj2F
� �

; ð5Þ
Fig. 5. Graph construction for 3D MRF. We connect each pixel with its 6-neighborhood in

5

where PS⊥ represents the complementary orthogonal projection of a
tensor X onto the linear space of tensor supported by S, refers to [14],
and the Frobenius norm of a tensor is the square root of the sum of
the squares of all its elements. The first term in Eq. (5) is the data con-
strain respect to the decomposition model, i.e. video Dijk is best fitted
by static background Bijk plus dynamic clutter Cijk when no moving
foreground Sijk=0. The second term forces that static background B is
temporal unidirectional low-rank. The third term E SÞð is the MRF en-
ergy function of S, which models the sparsity and spatiotemporal
smoothness of moving foreground. The last term means the dynamic
clutter can bewell represented by a constructed two-stream spatiotem-
poral CNN.M is an indicator tensor with objectness prior to force the
objects not to mingle with the background variations:

Mijk ¼
ζ , if pixelijk∈objectness regions
1, otherwise,

�
ð6Þ

where ζ=0.5 is a hyper-parameter. The objectness prior is utilized and
validated its effectiveness for moving object detection in [7,51]. We cal-
culate objectness regions by a category-agnostic object segmentation
approach [52] trained on PASCAL VOC dataset [53].We impose the indi-
cator tensor on dynamic clutter estimation as an attention map, to
spatial and temporal space to constrain foregrounds with spatiotemporal continuity.
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adaptively reduce the negative impacts from inaccurate clutter estima-
tion. The stable improvement is illustrated in Fig. 6.

The basic idea of the model is that the dynamic clutter can be satis-
factorily represented by a two-stream CNN, and the sparse and smooth
moving objects modeled by 3D MRF, meanwhile unidirectional low-
rank regularizes the temporal similarity of static background. The uni-
fied framework could benefit from the data-driven discriminative
prior of dynamic clutters, yielding separation of themoving foreground
with the dynamic background. Note the proposed method is a general
framework that can handle different kinds of clutter, e.g., dynamic vari-
ations, bad weathers, noises.

3.6. Optimization

Since the objective function defined in (5) is nonconvex, joint opti-
mization overB, C, S is extremely difficult. Hence, we adopt an alternat-
ing algorithm that separates the energy minimization over B, C, and S
into three steps.

1) Update for B: Static background approximation. Fixed mov-
ing foreground support S and dynamic clutter S, the mini-
mization in (5) over B by its tensor unfolding formation can
be formulated,

min
B3

1
2
jjPS⊥3

D3−B3−C3Þjj2F þ αjjB3jj∗:
�

ð7Þ

The Eq. (7) is a low-rank matrix approximation problem which can
be solved by the SOFT-IMPUTE algorithm [54] iteratively, i.e.,

B3  Θα PS⊥3
D3−C3ð Þ þ PS3B

� �� �
, ð8Þ

where Θα the singular value thresholding [55]. After B is obtained, the
tensor folding is performed to transform it into 3-order tensor B.
2) Update for C: Dynamic clutter estimation. Dropping out the irrele-

vant variable in Eq. (5), we can get the following subproblem,

min
C

1
2
jjPS⊥ D−B−Cð Þjj2F þ γ M∘jjC−f CNN Dð Þjj2F

� �
, ð9Þ

the clutter can be computed iteratively by [54],

C  M∘
PS⊥ D−Bð Þ þ PS Cð Þ þ 2γf CNN Dð Þ

2γ þ 1ð Þ : ð10Þ

3) Update for S: Moving foreground estimation. Given the current
static background B and dynamic clutter C, define Z ¼ D−B−C,
Fig. 6. Illustrations of two example results on estimated clutter, objectness mask, our results w
utilization of objectness prior (the first row), and avoid the negative impact of some unsatisfac
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Ep SÞð as the pairwise energy of Eq. (4), the formulation (5) can be
rewritten as follow,

1
2
jjPS⊥ Zð Þjj2F þ βjjSjj1 þ Ep Sð Þ

¼ 1
2
∑
ijk
Z2
ijk 1−Sijk
� �þ βjjSjj1 þ Ep Sð Þ

¼∑
ijk

β−
1
2

Zijk
� �2� 	

Sijk
� �þ Ep Sð Þ þ O,

ð11Þ

where O ¼ 1
2∑ijk Zijk

� �2 is a constant when B, C is fixed. The above en-
ergy is the standard form of MRFs with binary labels, which can be
solved exactly by graph cuts [56].

4. Experimental results and discussion

Extensive experimental validation is built on both synthetic (SABS
[57]) and real (I2R [58] and CDnet [59]) datasets. In order to verify the
effectiveness of proposed method in dynamic scenes, we select three
dynamic outdoor scenes in I2R [58] database and one typical sequence
in SABS [57] dataset. For CDnet [59], the challengingdynamicBackground
and badWeather categories are employed in our experiments. We com-
pare LDB with six state-of-the-art algorithms, including RPCA [9],
DECOLOR [14], GOSUS [30], OMoGMF [22], LSD [11], TVRPCA [12].

4.1. Implementation details

Parameter setting. In our model, the low-rank parameter α, the
sparsity parameter β and the clutter parameter γ control the balance
of the temporal low-rank property of static background, the sparsity
and continuity of moving foreground and similarity of estimated dy-
namic clutter respectively. For α, we start it with a relatively large
value, (i.e., the second largest singular value of D3), and decrease
it after each iteration by a factor η1 ¼ 1=

ffiffiffi
2
p

until the temporal-
dimension rank less thanK=5. Forβ, we similarly set itwith a relatively
large value, and decrease with each iteration by a factor η2=0.5 until β

reaches 4:5bσ2, where bσ is estimated online by the variance of residual
D−B−C. Empirically, the γ is set to be η3

ffiffiffiffi
β

p
, where η3=30 for most

sequences. Specifically, the parameter η, and θ in MRF constraint the
spatial and temporal continuity of moving foreground, which are set
5β, 0.5β respectively.

Training details. For each video, we select around 200 continuous
pure background frames to generate annotations. These training frames
are performed by RPCA method to obtain static background and sparse
outliers which can be regarded as the ground truth of dynamic clutters.
We use the target frame It and its neighbor frame It+1 as the input of
two-stream spatiotemporal CNN, and the dynamic clutter Ct of the
ithout and with objectness prior. It is shown that our approach obtains a better result by
tory objectness predictions (the second row).
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target frame as the output of the network. For the appearance branch,
the input is the target frame It to obtain the appearance information.
For the motion branch, we use an informative difference image of the
target frame and its neighbor frame It+1 − It to capture the motion
patterns. All frames are cropped into 40 × 40 image patches for
training. Based on Pytorch [60], we use Adam [61] with 32 batch size
for 50 epochs. The learning rate is set to 10−3, and is gradually
decreased. The details of the network can be found in the supplementary
material.

4.2. Experimental results

CDnet dataset. CDnet dataset is considered as one of the most diffi-
cult tracking benchmarks, which consists of 31 real-world videos over
80,000 frames and spanning six categories including diverse motion
and change detection challenges. In this dataset, we select the challeng-
ing dynamicBackground and badWeather categories to verify the effec-
tiveness of proposed methods in complex dynamic conditions. The
results are shown in Fig. 7 and Table 1.

The dynamicBackground category contains six video sequences with
dynamic background motions and shelters, and some dynamic clutters
have strong structural properties, e.g., swaying leaves, fountain. Due to
the complexity of dynamic background, many methods do not achieve
satisfactory results, the best result is 0.56 on average of six videos by
TVRPCA [12]. However, our approach (LDB) obtains a great improve-
ment of 39%, and the F-measure score is 0.78. It is worth noting that
for the most challenging sequences fountain01 and fountain02, our ap-
proach improves the performance by 75% and 43% respectively.

The badWeather category has slight background variations due to
rain or snow. These variations are quite small and sparse, which could
be eliminated well by some powerful approaches, and our approach
still achieves a comparable performance of 0.91 F-measure.

I2R dataset. As a widely used benchmark in the tasks of foreground
and background separation, the I2R dataset contains nine real videos in-
cluding static background, dynamic background, etc. Campus, Fountain,
WaterSurface, which are three typical dynamic outdoor scenes, are se-
lected. Table 3 lists the average F-measure over all foreground-
annotated frames calculated from all competing methods on the three
sequences. It can be observed that on average LDB has an evidently bet-
ter performance of 0.88 than other competing methods, while the sec-
ond result is calculated by DECOLOR [14] of 0.85. This superiority of
the LDB method can also be observed from Fig. 7. It is easy to see that
the detected foregrounds by LDB are closer to the groundtruth ones,
which conducts its larger F-measures in experiments.

SABS dataset. The SABS dataset is a synthetic dataset for pixel-wise
evaluating theperformance of background subtraction.We employ only
NoCamouflage sequence, which exists shelters (trees) and dynamic tex-
tures (periodically swaying leaves). The quantitative result is shown in
Table 3. Our approach achieves the best F-measure score of 0.71, signif-
icantly better than other competingmethods, where the best one is 0.38
of TVRPCA [12]. Fig. 7 (last row) also validates the superiority of pro-
posedmethods. Results evidently eliminate the interference of dynamic
textures of trees.

4.3. Ablation studies

Low-rankmatrix vs. low-rank tensor.Webegin our ablation study
by exploring the effectiveness of low-rank tensor modeling on static
background in our LDB.We implement fairly by removing other compo-
nent design, i.e., 3D MRF and Clutter in our model and utilize the L1
sparse norm regularization on foreground modeling. Table 2a shows
the results of low-rank tensor(LT) modeling and low-rank matrix(LM)
modeling. It can be seen that unidirectional low-rank tensor greatly im-
proves the results by 0.24 in I2R, 0.15 in dB, and 0.08 in bW, while
slightly decrease the synthetic NoCamouflage by 0.03. We analyze that
the low-rank tensor modeling would capture spatial–temporal
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correlations in videos, inducing better performance, except for the syn-
thetic sequence which has strict alignment in temporal dimension.

Study on the effect of each component. In order to verify the effec-
tiveness of each component presented, we experiment on three
datasets shown in Table 2b. From the results, we can see that 3D MRF
modeling significantly improves the results of I2R (0.28) and SABS
(0.28) due to the spatial–temporal continuity constraints on fore-
grounds, additional clutter component increases the performance by a
large margin on typical dynamic scences, including dB (0.26), and
SABS (0.35), and objectnessmodeling slightly improves the final results
by means of the semantic prior of objects.

Comparison with objectness detection. We conduct comparative
study to investigate the effectiveness of ourmodel with pure objectness
detection, reported in Table 2c. The superior performance of LDB might
be ascribed to the fact that low-rank decomposition model is crucial for
moving object detection. The boost performance might come from two
aspects: (a) our foregroundmodeling could represent arbitrary moving
objects instead of pre-defined object categories in PASCAL VOC, and
(b) the low-rank constraint on static background would suppress the
ambiguity of static objects detected in objectness detection.

4.4. Generalization analysis

To further explore the generalization of the proposed method, we
extend to apply LDB to other challenging conditions, like Gaussian
noise and rain. Here we select one simple video sequence without dy-
namic background highwaywhile adding three levels of Gaussian noises
as well as rains to simulate various challenging dynamic conditions.
Table 4 shows the comparison results with state-of-the-art algorithms.
The superiority of LDB can be easily observed: It performs the best/
the second best in 4/1 out of 5 conditions. Fig. 8 shows that LDB is robust
to these challenging conditions, which naturally confirms the generali-
zation ability of our proposed method.

Despite our method being designed for the dynamic background
scenes, we also conduct the generalization experiments on other
regular and challenging scenes in the CDnet dataset, demonstrated
in Table 5. We compare our LDB with other state-of-the-art methods
on the other challenging categories of CDnet, including baseline,
cameraJitter, intermittentObjectMotion, shadow, thermal, turbulence, and
nightVideos. We observe that for these categories, our LDB still achieves
comparable results, which indicate that our low-rank tensor constraints
on static background and the sptaiotemporal continutity modeling on
foregrounds can adapt flexibly on various challenging videos.

4.5. Compared with deep learning methods

We also compare our approach with end-to-end deep learning
methods from three aspects: annotation burdens, generalization ability,
and stability. We select two state-of-the-art algorithms FgSegNet v2
[42] and BSUV-Net [44], and implement their source codes to perform
evaluations on the CDnet dataset, shown in Table 6. (1) Annotation bur-
den: FgSegNet v2 and BSUV-Net both require pixel-wise annotations of
moving objects, causing higher labeling burdens than our approach,
which only utilizes a few object-free frames to support weakly supervi-
sion. (2) Generalization ability: we evaluate it by splitting the training
and testing sets on different videos, and report the results on unseen
videos. As shown in Table 6, although FgSegNet v2 achieves the best re-
sult on seenvideos (row1), it fails catastrophically on unseen sequences
(row 2), while our method has a stable result on unseen videos (row
5) since the majority of the background is modeled by the low-rank
component, not discriminative prior of sparse dynamic clutter. The
BSUV-Net only provides one trained model without knowing its train-
ing/testing split configuration, thus the result on row 3 is on both seen
and unseen sequences. (3) We also compare the stability of BSUV-Net
and our approach on additional segmentation masks, which are used
in both BSUV-Net and LDB to improve the results. By setting the value



Fig. 7. Qualitative result comparisons on I2R [58] (from first to third rows), CDnet [59] (from fourth to thirteenth rows) and SABS [57] (the last row) datasets.
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of the segmentationmask as zero, we obtain the final results (row 4 and
5) to compare the stability. It is seen that the BSUV-Net highly relies on
the segmentation mask results, while our approach shows the best re-
sults on unseen videos without semantic segmentation prior, as
shown on gray background in the Table 6.

We also compare our approach with unsupervised deep learning
basedmethods, where UMOD [62] is a typical work. They utilize images
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and the associated optical flow as data input, and train two adversarial
networks to separate the foreground and background. Since this paper
does not provide their results on the CDNet dataset, we try to imple-
ment it on the CDNet with their released codes for fair comparison.
We use all annotated CDNet data to train 40 epoches for the generator
and the inpainter on a single GPU Nvidia 2080Ti, with PWC [63] to gen-
erate optical flow following the paper setting. The results are shown as



Table 1
Performance evaluation on CDnet [59] dataset using F-measure. The average F-measures of the dynamicBackground and badWeather categories are shown in the eighth (Avg) and the last
column (Avg). Red: best, blue: the second best. Our approach exhibits a great improvement on dynamicBackground category, and achieves state-of-the-art performance on badWeather
category.

Table 2
Ablations on I2R, dynamicBackground(dB), badWeather(bW) of CDnet, and SABS dataset with average F-measure. Red: best, blue: the second best.

Table 4
Generalization analysis of proposed method on noisy and rainy sequences, where σ is the
noise level of added Gaussian noise. Red: best, blue: the second best.
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Table 7 and Fig. 9. We observe that our approach achieves better results
on all sequences in the dynamicBackground and badWeather catego-
ries. From Fig. 9, it is seen that UMOD fails on many sequences, espe-
cially on low illumination (e.g., blizzard), and dynamic scenes (e.g.,
canoe). The reasons may be that: (1) Optical flow cannot work well
for these sequences due to the data distribution gap between these
scenes and pre-trained datasets, thus the severe optical flow results
limit the performance of UMOD. (2) The dynamic clutter in the back-
ground breaks the assumption of UMOD that motion is only highly rel-
evant with the moving objects, so that UMOD cannot handle dynamic
background, which is the typical issue we address. In contrast, our
method is built on temporal low-rank property which exists on arbi-
trary sequences, and learns dynamic background only based on the
video sequence itself. That means that our approach does not rely on
any pre-trained datasets, causing better generalization ability for vari-
ous scenes in the real world.

5. Discussions and limitations

Our work follows the research line of low-rank based methods,
which have a long history and remain reasonability on the moving ob-
ject detection task. With the low-rank assumption, these methods usu-
ally achieve satisfactory results and have a good generalization ability.
However, they still suffer from several shortages compared with other
Table 3
Performance evaluation on I2R [58] and SABS [57] dataset using F-measure. From left to
right: Campus, Fountain, WaterSurface, the average of I2R, and NoCamouflage sequence in
SABS. Red: best, blue: the second best. LDB outperforms state-of-the-art methods on I2R,
and significantly boosts on the SABS dataset.
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categories of approaches, e.g., deep learning based algorithms.
(1) They model the similarity of adjacent frames in sequences, which
is not suitable in a few cases, like abandon illumination changes by turn-
ing on/off the light. While deep learning methods can address them by
data augmentation strategies. (2) Thesemethods usually consider mul-
tiple frames simultaneously to model the low-rank property, resulting
in more computational costs than single image processing in the deep
learning based algorithm. Despite the disadvantages, they still contrib-
ute to the computer vision community for two reasons. (1) There is a
comprehensive theory of low-rank tensor framework, and moving ob-
ject detection task is a typical application for this theory, obtaining
Table 5
Evaluation experiments on other categories of CDnet. The metric is F-measure. Despite
that our approach is specific designed for the dynamic clutter, we still have a good ability
for handling various challenging conditions due to flexible background and foreground
modeling, thus resulting in advanced performance. Red: best, blue: the second best.



Table 6
Comparison experiments with deep learning methods on CDnet dataset.

FS WS Seen Unseen w/ Seg. dyna. badw. base. came. inte. shad. ther. turb. nigh.

FgSegNet v2 [42] ✓ ✓ 0.99 0.99 0.99 0.99 0.83 0.82 0.41 0.74 0.81
FgSegNet v2 [42] ✓ ✓ 0.28 0.16 0.41 0.28 0.37 0.06 0.00 0.00 0.03
BSUV-Net [44] ✓ ✓ ✓ ✓ 0.87 0.79 0.96 0.85 0.69 0.66 0.48 0.57 0.44
BSUV-Net [44] ✓ ✓ ✓ 0.34 0.18 0.34 0.59 0.14 0.27 0.04 0.49 0.38
LDB(ours) ✓ ✓ 0.76 0.90 0.79 0.77 0.45 0.38 0.57 0.59 0.38

FS means Fully supervised,WS indicatesWeakly supervised. FgSegNet v2 achieves the best results on seen videos (row 1), but has a poor generalization ability on unseen videos (row 2).
BSUV-Net highly relies on segmentation results as inputs (row 3 v.s. row 4). Our approach achieves the best results on unseen videos without segmentation prior (as shown on gray back-
ground), meanwhile avoids high annotation burdens due to the weakly supervised manner.

Table 7
Comparison experiments between unsupervised deep learning basedmethod UMOD [62] and our approach on dynamicBackground and badWeather categories in CDNet dataset using F1
Measure. It is seen that our LDB achieves better results on all sequences.

Video dynamicBackground badWeather

boats canoe fall foun.01 foun.02 over. Avg blizz. skat. snowF. wetS. Avg

UMOD [62] 0.26 0.23 0.48 0.03 0.24 0.69 0.32 0.06 0.57 0.28 0.47 0.35
LDB (ours) 0.92 0.92 0.79 0.14 0.93 0.95 0.78 0.90 0.90 0.93 0.89 0.91

Fig. 8. Generalization experimental results of LDB and other state-of-the-art methods on noisy and rainy sequences, where the noise levels are (15, 25, 50).
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Fig. 9.Qualitative comparable results between unsupervised deep learning basedmethod UMOD [62] and our approach on CDnet dataset. From left to right: original images, optical flow
computed by PWC [63], mask prediction by UMOD, and our results. Notice that the optical flow prediction fails on dynamic background (e.g., canoe, fountain01) and bad weather (e.g.,
blizzard, wetSnow), resulting in worse moving object detection by UMOD, in contrast to that our approach (LDB) shows more stable results on these sequences.
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satisfactory results. (2) As generativemethods, they avoid the inductive
bias in learning based methods, and could apply on any scenes without
additional training process, achieving better generalization ability. Our
work improves the low-rank based methods on dynamic scenes, thus
further extending their flexibility and availability on various scenes.

6. Conclusion

In this paper, we propose a novel and unified model to address
moving object detection from the dynamic background. In this
model, a video is decomposed into a unidirectional low-rank static
background, a sparse and smooth moving foreground, as well as a
CNN represented dynamic clutter. The dynamic clutter is thor-
oughly represented by a two-branch patch-based neural network
in a weakly supervised manner. Embedded with the data-driven
discriminative prior of dynamic clutter, the unifiedmodel can prop-
erly decouple the variations of background with moving foreground.
Experiment results show that the proposed method outperforms the
state-of-the-art methods both qualitatively and quantitatively in the
challenging datasets.
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