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ABSTRACT 
 
Deblurring and destriping are both classical problems for 
remote sensing images, which are known to be difficult. 
Treating deblurring and destriping separately, such a 
straightforward approach, however, suffers greatly from the 
defective output. This paper shows that the two problems 
can be successfully solved together and benefit greatly from 
each other within a unified variational framework. To do 
this, we propose a joint deblurring and destriping method by 
combining the framelet regularization and unidirectional 
total variation. Extensive experiments on simulation and 
real remote sensing images are carried out and the results of 
our joint model show significant improvement over 
conventional methods of treating the two tasks separately. 
 

Index Terms—Blind image deblurring, destriping, total 
variation, tight frame, split Bregman method. 
 

1. INTRODUCTION 
 
The blur and stripes are common degradation problems in 
remote sensing images. Image blur could be the result of the 
atmospheric turbulence, scattering, and spacecraft motion, 
and the causes of the stripe issue include nonresponse of 
detector, relative gain and offset variations of detectors, and 
calibration errors. The blur and stripes severely limit the 
application of the resulting images. Therefore, many image 
deblurring [1]-[5] and destriping methods [6]-[9] have been 
proposed to improve the quality separately. Formally, the 
degraded process can be described as: 

,nHfg                                          (1) 

where NRf  and (N stands for the number of the 

image pixels.) represent the latent image and degraded 

image, respectively. 

NRg

 NNRH denotes the matrix formed 
from the point spread function (PSF) h. In this paper, 

NRn contain both stripe noise and random noise. 
In conventional works, a nature solution to the blur and 

stripes would be handled one by one. However, if the 
destriping process is performed firstly, the strong edge  
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Fig. 1. (a) Original remote sensing image. (b) Horizontal 
derivative. (c) Vertical derivative. 
 
structures belonging to the blur image would be 
unavoidably damaged, leading to the difficulty in estimating 
the accurate PSF in the blind image deblurring. Thus, the 
next blind image deblurring will be more difficult and will 
probably introduce unexpected artifacts. What is more, any 
residual stripes will be greatly aggravated by the blind 
image deblurring. On the contrary, if the blind image 
deblurring is accomplished firstly, the stripes will be easily 
regarded as the edges to be recovered so that the stripe 
artifacts will be much more severe. As a result, the removal 
of the stripe noise in the next would be much harder.  

In this paper, we present a joint deblurring and 
destriping method by combining the framelet regularization 
and unidirectional total variation (TV) to deblur and 
destripe simultaneously. With such a combination, the 
proposed method connects the deblurring and destriping in a 
unified framework by seeking the piecewise smooth 
solution iteratively. To the best of our knowledge, this is the 
first attempt to incorporate the two problems into a unified 
framework.  
 

2. THE PROPOSED METHOD 
 
2.1. Problem Formulation  
 
In conventional restoration works, the noise n is often 
assumed as random noise. In reality, however, the remote 
sensing image includes both the random noise and stripe 
noise. Therefore, it is necessary to model the stripe noise 
into the minimization for reasonably estimating the  
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process. Formally, given the blurred and striped image g, 
the clear image f and PSF h are expected to be estimated:  

),(R)(R)(minarg}ˆˆ{ hhff
,

hfgHfh,f
hf

    (2) 

The stripe noise, which have significantly directional 
characteristic, is much different from the random noise. We 
observed that the stripes have little influence on the 
gradients along the stripe lines, while the gradients across 
the stripe lines are changed heavily. To illustrate this, in Fig. 
1 we show the derivatives of the hyperspectral image along 
two directions. The stripes badly change the gradient across 
the stripe lines [Fig. 1(b)], while the gradient along the 
stripe lines are influenced slightly [Fig. 1(c)]. This 
significant characteristic of striping images motivates us:  

1. Keep the gradients along the stripe in Hf as that of the 
degraded image g.  

2. Penalize the gradients across the stripe lines.  
Therefore, we propose to translate motivation 1 to the 

following data fidelity term: 
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       (3) 

where  is the parameter that balances the two terms. In this 

work, we regard the direction along the stripe as x-axis and 
across the stripe as y-axis. The first term is the conventional 
reconstruction constrain. The second term aims at 
preserving the gradients along the stripe in Hf as that of the 
degraded image g. This is very reasonable since the stripes 
influence the gradient along the stripes slightly.  

In image restoration, the sparsity based regularizations 
[4, 5] and TV based regularizations [1, 2, 8, 9] have been 
the popular choices of the regularization terms. In this paper, 
the framelet regularization and the unidirectional TV are 
coupled to connect the deblurring and destriping issue: 

,||||||||)(R 1y1f fWff                            (4) 

where W is the framelet transform using filters of framelet 
system. The B-splines framelet [4] is used in our 
implementation. The interested readers can refer to [4] for 
more implementation details on the framelet transform. The 
functional (4) is intuitive. The sparsity framelet 
regularization term penalizes the number of the large 
framelet transform coefficients of the image f in the framelet 
domain, which could be viewed as penalizing the number of 
the pixels with large discontinuities. Thus, the resulting 
minimizer f tends to be a piecewise smooth solution. 
However, by only using the framelet regularization, the 
stripes will be easily regarded as the structural information 
to be enhanced, especially when the stripes are quite severe. 
The unidirectional TV penalizes the L1-norm of the 
gradient across the stripes so as to remove the stripe noise, 
which is the translation of the motivation 2. By balancing 
the sparsity prior ||Wf||1 and the constraints across the 
stripes || yf||1 using the parameter , the proposed 
regularization term (4) will yield a piecewise smooth and 
non-stripes image f.  



To favor piecewise constant PSF with discontinuities, 
we regularize the PSF by the TV norm [1]. Thus the final 
energy functional about f is: 
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For convenience, we set the regularization parameters as 

21, and 3 , respectively. Note that the proposed model is 

a general framework which can handle different kinds of 
blurs and stripes, e.g., out-of-focus blur, uniform blurs, non-
periodical stripes, non-uniform stripes and etc. 
 
2.2. Optimization 
 
There are two unknowns of h and f to be estimated. The 
most commonly used approach is an alternative iteration 
scheme [4]. The alternative iteration scheme is described in 
two steps.  

f-step: given the blur kernel, compute the clear image, i.e., 
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h-step: given the clear image, compute the blur kernel, i.e., 
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Because the L1-norm terms in (6) and (7) are 
nondifferentiable and nonseparable, it is a very challenging 
problem to find an efficient method to optimize the 
proposed model. To solve the minimizations involving such 
term, we introduce the split Bregman iteration [10].  

In f-step, the basic idea of split Bregman iteration is to 
convert the unconstrained minimization problem on f in (6) 
into a constrained one by introducing auxiliary variables 

Wfd 1 and fd y2  . Then, the problem could be further 

transformed into an unconstrained minimization with 
strictly enforcing the constraints by applying the Bregman 
iteration: 

,||||
2

||||
2

||||||||||(||
2

||||
2

1
min

2
22y2

2
211

122111
2
2x

2
2

,, 21

bfdbWfd

ddg)HfgHf
ddf













 (8) 

where , are penalization parameters. Further, the 

functional (8) is converted into three separate subproblems. 
 The f-related subproblem is 
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It is a least-square problem, which is equivalent to the 
following linear system: 
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 The d1-related subproblem is: 
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The subproblem in (11) could be solved by using a 
shrinkage operator in the following way: 
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Once is obtained by (10), and can be computed 

parallelly. Thus, could be expressed as: 
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Finally, we update Bregman variables and as follows: 1b 2b
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In h-step, the split Bregman iteration is also employed 
to solve the PSF h. Similarly, the solution step of PSF h is 
similar to that of (9)-(10). In addition, we impose positive 
constraints on f and h, and the PSF is constrained to 

satisfy  [1, 2]. 1)j,i(h

 
3. EXPERIMENTAL RESULTS 

 
We compared the proposed model with TV based 
deblurring algorithm [1] (TV), current Variational and 
Stationary Noise Remover destriping method [9] (VSNR), 
their combined method. If firstly remove the stripe noise by 
VSNR, then deblur the destriped results with TV, we mark 
the combined method as VSNR-TV, otherwise mark it TV-
VSNR. The quantitative assessments were Peak Signal-to-
Noise Ratio (PSNR), the universal image quality index 
(UIQI) [11] and the blind image quality index BIQI [12]. 
The larger PSNR and UIQI are, the better the restored 
image is. The smaller BIQI is, the better the image quality is. 

In Fig. 2, we showed the restored results of different 
method. Fig. 2(a) is the original high-quality QuickBird 
remote sensing subimage of 256×256 pixels. We degraded 
Fig. 2(a) with a 5×5 Gaussian blur (standard deviation 

) and additional stripe noise. With the TV method in 
Fig. 2(c), it is observed that most details are restored, but 
the stripes are aggravated. This is because the stripes are 
inevitably regarded as the edges to be recovered. In Fig. 
2(d), it can be seen obviously that much residual stripes still 
exist. Such a result is not surprising as the stripes in Fig. 2(b) 
are badly aggravated, which highly increases the difficulty 
in removing the stripes. The VSNR-TV can easily remove 
all the stripes, while the piecewise constant effects are 
unexpectedly introduced, as  

1.2

(a) (b)

(f)(e)(d)

(c)

 
 
Fig. 2. Visual comparison by various methods. (a) Original 
clear image. (b) Blurred and striped image. Restored results 
by (c) TV. (d) TV-VSNR. (e) VSNR-TV. (f) Proposed 
method. The third row are the close-ups extracted from (a)-
(f), respectively. 
 

Table I 
EVALUATION INDICES COMPARISONS OF DIFFERENT METHODS 

Index Degraded TV-VSNR VSNR-TV Proposed 
PSNR 21.71 21.96 24.94 26.37 
UIQI 0.47 0.58 0.73 0.81 
BIQI 61.37 37.75 55.35 32.19 

 
shown in Fig. 2(e). From Fig. 2(f), we can see that the 
proposed method produces much sharper edges with 
abundant textures and stripes are completely removed. 

To test the robustness of the proposed method to the 
stripes, we also carried the experiment on the image with 
higher stripes level in Fig. 3. The blur is still the 5×5 
Gaussian blur (standard deviation ), and then six 
discontinuous stripe lines are periodically added into the 
blurred images in each ten lines. In Fig. 3 (c), we can find 
that some notably residual stripes exist in the red mark. 
From the results, we can conclude that the proposed method 
is less sensitive to the stripes than the conventional methods. 
The effectiveness of the proposed algorithm could be also 
verified with overall quantitative assessments shown in 
Table I and II. It can be seen that the proposed method 
consistently gets the best indices on different stripe noise 
levels. 

1.2

Furthermore, to test the proposed method in handling 
different kinds of blur, the uniform blur and out-of-focus 
blur are incorporated into our experiment. Fig. 4(a) and Fig. 
4(b) is the uniform blur case and out-of-focus blur case, 
respectively. Note that, the stripes in the Fig. 4(a) are non-
periodical and with random lengths within a scan line. With 
the proposed method, we can clearly observe that the stripes  
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(a) (b)
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Fig. 3. Experiments with severe stripe noise. (a) Blurred 
image with severe stripe noise. Restored result by (b) VSNR, 
(c) VSNR-TV, (d) proposed method.  
 

Table II 
EVALUATION INDICES COMPARISONS UNDER SEVERE STRIPES  

Index Degraded VSNR VSNR-TV Proposed
PSNR 19.90 24.16 26.55 27.03 
UIQI 0.38 0.65 0.77 0.80 
BIQI 72.14 32.84 42.97 20.64 

 
are effectively removed. Moreover, the edges and detailed 
information is well recovered. 

Figure 5 shows the restored results on a real 
hyperspectral image (band 195). The restored results 
demonstrate that the proposed method can efficiently 
remove the non-periodical stripe noise and recover images 
with better visual performance. 
 

4. CONCLUSION 
 
In this research, we proposed to couple the blind image 
deblurring and destriping into a unified restoration model, 
and demonstrate its application on remote sensing images. 
By combining the framelet regularization and unidirectional 
total variation, the proposed model could well handle 
different kinds of blur and stripe noise simultaneously. Both 
visual inspection and quantitative evaluation showed that 
the proposed method perform quite well in different cases 
and demonstrates significant improvements over that of 
treating them separately. Although only the remote sensing 
images have been investigated in this paper, the method can 
be applied to other sensors contaminated with similar 
artifact.  

(a)

(c) (d)

(b)

 
 
Fig. 4. Experiments with different kinds of blur. (a) 
Uniform blur. (b) Out-of-focus blur. (c) and (d) Restored 
results by the proposed method. 
 

(a) (b)

(c) (d)

 
 
Fig. 5. Experiments with Real image. (a) Hyperspectral 
image (BIQI = 56.42). Restored result by (b) TV-VSNR 
(BIQI = 24.69), (c) VSNR-TV (BIQI = 35.39), (d) proposed 
method (BIQI = 24.24). 
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