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Abstract— The spectral and the spatial information in hyper-
spectral images (HSIs) are the two sides of the same coin. How
to jointly model them is the key issue for HSIs’ noise removal,
including random noise, structural stripe noise, and dead pix-
els/lines. In this paper, we introduce the deep convolutional neural
network (CNN) to achieve this goal. The learned filters can
well extract the spatial information within their local receptive
filed. Meanwhile, the spectral correlation can be depicted by the
multiple channels of the learned 2-D filters, namely, the number
of filters in each layer. The consequent advantages of our
CNN-based HSI denoising method (HSI-DeNet) over previous
methods are threefold. First, the proposed HSI-DeNet can be
regarded as a tensor-based method by directly learning the filters
in each layer without damaging the spectral-spatial structures.
Second, the HSI-DeNet can simultaneously accommodate various
kinds of noise in HSIs. Moreover, our method is flexible for
both single image and multiple images by slightly modifying
the channels of the filters in the first and last layers. Last but
not least, our method is extremely fast in the testing phase,
which makes it more practical for real application. The proposed
HSI-DeNet is extensively evaluated on several HSIs, and outper-
forms the state-of-the-art HSI-DeNets in terms of both speed and
performance.

Index Terms— Convolutional neural network (CNN),
denoising, destriping, hyperspectral image (HSI) restoration.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) restoration has been a
hot topic in the past few years, which includes a variety

of classical low-level vision tasks, such as HSIs’ denoising,
destriping, super-resolution, and so on. In this paper, we focus
on various noise removal methods in the HSIs. Numerous
works have been proposed for advancing these fields and
tremendous progress has been achieved in recent years [1]–[8].
However, there still exist several dark clouds over the HSI
restoration filed, which are urgently needed to be solved.
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First, different from the natural 2-D image, the HSIs could
deliver additional spectral information of the scenes, resulting
in 3-D images. Due to the inherent 3-D tensor format of the
HSIs, the previous vector-/matrix-based methods cannot fully
exploit the spectral-spatial structural correlation. The way of
modeling the spectral-spatial structural correlation in the HSIs
contributes much to the final restoration performance. Thus,
we raise the first question: how to jointly utilize both the spatial
and the spectral information, and at the same time preserve
the spectral-spatial structural correlation intactly for HSI 3-D
modeling?

Second, the noise characteristic in HSIs is complicated,
which mainly includes both the random noise and the
structural stripe noise, due to the multidetector imaging
systems. Such a mixed-noise situation makes the classical
Gaussian assumption invalid. Although the elaborated mixture
of Gaussian (MoG) methods have been proposed [9], [10],
the restoration results are still somewhat unsatisfactory for the
stripe noise. Hence, we ask the second question: should we
choose the statistical modeling method directly to the end for
HSI noise modeling?

Third, the size of the HSIs is quite large due to the
additional spectral dimension. Most of the previous methods
suffer from very long running time, due to the large data size
and the complicated operations on HSIs, such as nonlocal
patch/cubic searching [11], [12]. This makes the state-of-the-
art HSI restoration methods unpractical for real application.
Consequently, we present the third question: could we just
use simple and effective models for fast speed?

In recent years, for the three mentioned problems (data
modeling, noise characteristic modeling, and speed), several
works have made great progress.

For HSIs’ data modeling, existing HSIs’ restoration methods
can be roughly classified into three categories: 1-D vector-
based sparse representation methods, 2-D matrix-based low-
rank matrix recovery (LRMR) methods, and 3-D tensor-based
approximation methods. The previous two kinds of methods
are easy to break the spectral-spatial structural correlation,
due to vectorization. The tensor-based methods are naturally
proposed to preserve the intrinsic structure correlation with
better restoration results, especially the low-rank tensor-based
methods in recent two years [11]–[15]. However, the rank
of the tensor in the Tucker decomposition-based method is
usually defined as the sum of the rank along each of its modes,
and still needs to resort to the matrix. The problem has been
alleviated, but still exists.

For noise characteristic modeling, there are two kinds of
works: image denoising and image decomposition. The first
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kind of methods [9], [10] introduced the MoG model to
accommodate the distribution of the mixed noise in HSIs.
However, for complex mixed noise in HSIs, especially the
stripe noise with a similar structure as the image content,
these methods cannot well differ the noise from the HSIs.
As for the latter method, Chang et al. [16] introduced the
robust principal component analysis (RPCA) [17] model by
regarding the stripe noise as the structural error component
to be estimated with Gaussian assumption. Although they are
suitable for the Gaussian and the stripe noise, they are less
effective for other kinds of mixed noise.

For the running time, the researchers of HSIs have paid
less attention to this problem. Most of the optimization-
based methods are time-consuming. The most representative
method with fast processing time is block-matching and
4-D filtering (BM4D) [18], since it employs the 3-D transform
→ filtering → inverse 3-D transform pipeline with very simple
operations. However, it is not data-adaptive, and only works
well for the random noise but less effective for the stripe
noise. In [11], we put forward the idea “making it shorter" by
utilizing the key low-rank property in the HSI and discarding
the weaker correlation so as to relieve the computation burden.
Nevertheless, the running time is still intolerant.

In this paper, we propose a convolutional neural network
(CNN)-based HSI restoration method to practically resolve
these three problems.

A. HSI Data Modeling

Instead of optimizing a cost function with various unsuper-
vised priors for the HSIs, we treat the HSI restoration task as
a discriminative mapping (learning the mapping parameters)
problem and present a CNN-based HSIs’ restoration model.
Naturally, the learned multichannel filters in each layer can
simultaneously model the spectral-spatial information explic-
itly. The spatial structural pattern in HSIs can be well rep-
resented by the local receptive filed of the learned filters via
the spatial convolution operation, and the spectral correlation
in HSIs can be depicted by the learned multichannel filters
along the third axis, which in HSIs’ restoration we call it
a spectral filter. The spectral filter can be regarded as a
spectral average operator. Moreover, the degraded HSIs can
be directly imported to the CNN model without any further
vectorization or matrixization.

B. Noise Modeling

As for the mixed noises, we do not apply any explicit
expression to fit their distributions, since the noise in the
HSIs is too much complicated. Instead, our philosophy is to
bypass the difficulty of constructing sophisticated distribution,
and resort to a large amount of data. We make use of noisy
HSIs to implicitly fit the distribution of the noises via the
CNN model. Thus, the highly nonlinear fitting capability of
the CNN enables our HSI denoising method (HSI-DeNet) to
handle arbitrary mixed noise for both the single image and
multiple images easily.

C. Running Time

As for the training phase, we employ the residual learning
strategy for fast convergence. As for the test phase, the CNN,

which mainly contains several convolution and activate layers,
is quite suitable for parallel computation on GPU. Given a
512 × 512 × 10 noisy image, it only takes about 20 ms to be
processed in the test phase.

As for the architecture of our HSI-DeNet, we mainly
apply the residual learning strategy, dilated convolution, and
multichannel filtering. We do not directly export the desired
clean image, but the residual noisy image. Residual learning
has been demonstrated to be very effective in speeding up the
training and boosting the final performance both in terms of
low-level vision [19]–[21] and mid-level vision [22], [23]. The
dilated convolution [24] is used to enlarge the receptive field
of the filters in the spatial domain; meanwhile, multichannel
filtering is designed for comprehensively capturing the spectral
information. Note that our concentration is not about the CNN
design, but to demonstrate that the CNN is quite suitable for
the HSIs’ restoration task.

We further extend the HSI-DeNet into an adversarial frame-
work. We introduce the adversarial subnetwork as a learnable
prior. The L2 loss-based generator subnetwork focuses on
the pixel-level modeling benefiting for quantitative assess-
ment [peak signal-to-noise ratio (PSNR) and structure sim-
ilarity (SSIM)] of the restored image, while the adversarial
loss-based discriminator subnetwork aims at the feature-level
modeling benefiting for the qualitative assessment (visual
appearance) of the restored image. The two terms compete
with each other, which is very similar to the fidelity +
prior/regularization framework in optimization-based methods.
The contributions of the proposed work are summarized as
follows.

1) To the best of our knowledge, this is the first work
for HSIs’ restoration with a fully CNN. The proposed
HSI-DeNet can be regarded as the learning multiple
channels’ 2-D filters, and well preserve the spectral-
spatial correlation.

2) We incorporate residual learning, dilated convolution,
and multichannel filtering into the network for better
modeling the HSIs. Moreover, we explore the adversarial
network for HSIs’ restoration with better balance in
qualitative and quantitative terms.

3) The HSI-DeNet is robust and effective for mixed noise
in HSIs, and very flexible for the arbitrary input. Even
for the single image overwhelmed with mixed noise,
we could also obtain satisfactory result.

4) The proposed method has been tested on extensive
HSI data sets with impressive results. Compared with
previous methods, our method has achieved faster testing
speed and better restoration performance.

The remainder of this paper is organized as follows. The
related HSIs’ restoration methods are introduced in Section II.
Section III presents the concrete architecture of the HSI-DeNet
and its adversarial extension. Extensive experimental results
are reported in Section IV. Section V concludes this paper.

II. RELATED WORKS

The HSI community is indeed highly associated with the
development of the computer vision community. To date,
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a variety of HSI-DeNets have been proposed in accordance
with the most popular tools at that time. In this paper,
we classify them into three main categories, and compare them
with the proposed method, respectively.

A. Filter-Based Methods

At the beginning of the 21st century, the most
powerful representation tool was the wavelet and its
variations [25]–[27]. Unsurprisingly, followed by this direc-
tion, Othman and Qian [28] proposed a hybrid spatial-spectral
derivative domain wavelet shrinkage model with a fixed
wavelet dictionary to reduce the noise in HSIs. A generalized
multidimensional Wiener filter for denoising is adapted to
HSIs [29]. The interested readers could refer to the related
works [30]–[32]. However, the main drawback of these meth-
ods is that they used the handcrafted and fixed wavelet
basis for all HSIs. It has been verified that the learning
representation is more powerful than the predefined handcraft
representation [33]. Our idea to learn the filters is in line
with these filtering-based methods. However, the HSI-DeNet
is more adaptive to the HSIs, which facilitates us to learn a
more overcomplete representation.

B. Optimization-Based Methods

Most of the HSIs’ restoration methods are optimization-
based, including 1-D vector-based sparse representation meth-
ods, 2-D matrix-based LRMR methods, and 3-D tensor-based
approximation methods. The most representative methods for
the 1-D method are the total variational (TV) [34] and the
dictionary learning [35] method. In 2012, Yuan et al. [36] pro-
posed an HSIs’ denoising algorithm by employing a spectral-
spatial adaptive total variation model. Zhao and Yang [37]
introduced an HSI-DeNet by jointly utilizing the sparsity and
low-rank property of HSIs in spatial and spectral domains.

With the development of the RPCA [17] and the fast
optimization algorithm [38], the 2-D LRMR methods have
shown its effectiveness for HSIs’ restoration [9], [10], [37],
[39]–[42]. By lexicographically ordering the 3-D cube into
a 2-D matrix representation along the spectral dimension,
Zhang et al. [40] and He et al. [41] proposed a low-rank
matrix restoration model for mixed-noise removal in HSIs.
Chang et al. [42] proposed a globally low-rank decomposition
model for HSIs’ destriping, since only parts of data vectors are
corrupted by the stripes but the others are not. However, these
vector/matrix-based methods inevitably cause damage to the
spectral-spatial structural correlation for the 3-D tensor HSIs.

To alleviate this issue, the tensor-based HSI-DeNets have
emerged [43]–[45]. In recent two years, when tensor decom-
position meets the sparsity property, this direction has yielded
the state-of-the-art HSIs’ restoration works [11]–[15]. These
tensor-based methods substantially improved the HSIs’ denois-
ing performance, at the cost of higher computational burden.
Our starting point to better preserve the spectral-spatial corre-
lation from the tensor perspective is the same as these methods.
While our HSI-DeNet mainly relies on the fully convolutional
operation, the previous tensor-based methods still need to
resort to the matrix. Compared with the optimization-based

methods, our HSI-DeNet shows better performance in running
time. Moreover, the optimization-based methods are with the
strong assumption to the Gaussian noise. Our work bypasses
this assumption by using large training data set to implicitly
fit the distribution of the arbitrary noisy input.

C. Learning-Based Methods

Deep learning has been widely used in HSIs’ mid-level
tasks, such as classification [46], pan-sharpening [47], [48],
object detection [49], to name a few. In addition, the CNN
has proved its effectiveness in natural image low-level vision
tasks, such as denoising [19], super-resolution [50], and so on.
Thus, it is natural for us to introduce the CNN to the HSIs’
restoration task. Compared with the classical network, our
HSI-DeNet has two distinct characteristics. On the one hand,
we consider the spatial and the spectral property of the HSIs,
and apply the dilated convolution and multichannel filters
to model them, respectively. On the other hand, we output
the residual noise, and not the clean image. Such a residual
learning strategy shows faster training convergence speed.

III. PROPOSED HSI-DENET

A. Preliminary for CNN

Assuming there are D layers in the designed network, for
a given sample Y ∈ R

R×C×B , the output of the first layer is
X(1) = S(W (1) ⊗ Y + P(1)) ∈ RR×C×B1 , where W (1) is the
projection matrix to be learned from the first layer, P(1) is the
bias vector, ⊗ is the convolutional operator, B1 is the channel
number of the first layer, and S : R �→ R is the nonlinear
activation function, which handles each pixel individually,
such as the sigmoid or rectified linear unit (RELU). Next,
the output of the first layer X(1) is treated as the input of
the second layer. Consequently, the output of the dth layer
can be expressed as

X(d) = S(W (d) ⊗ X(d−1) + P(d)) ∈ RR×C×Bd . (1)

Equation (1) known as the forward procedure is to extract
the features from the input data in a hierarchy manner. The
visual appearance of the features can be seen in Fig. 1.
The goal is to learn the mapping parameters by transforming
the degraded data domain to the desired data domain. In con-
ventional model-based methods, the restoration procedure can
be formulated in the maximum a posteriori framework from
the statistical perspective as follows:

X̂ = arg max
X

p(Y|X)p(X)

∝ arg max
X

{log p(Y|X) + log p(X)}. (2)

Each component in (2), such as the noise (posterior term) and
the clean data (prior term), is modeled with one specific and
explicit distribution. The intuition to transform the degraded
data to another domain behind the conventional methods
and CNN is similar. For model-based methods, they make
an assumption for the data distribution in the transformed
domain, such as the gradient domain-based TV prior [34]
and the wavelet domain-based Framelet prior [51], [52].
Usually, we can apply the fast optimization method, such
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Fig. 1. Architecture of the proposed HSI-DeNet.

as ADMM [38], by introducing the auxiliary variable A to
solve (2)

A(k+1) = shrinkα(DX(k) + αJ(k)) (3)

where D is the sparse transformation operator, A is the
auxiliary variable that can be approximately equivalent to X,
J can be regarded as the compensating variation, α is the
regularization parameter, shrinkα is the soft shrinkage operator,
and k is the iteration number.

We can observe that (1) and (3) are very similar to each
other. Both of them obtain the desired solution gradually via
a linear transformation and then nonlinear activation function.
The number of the recursion depends on the depth of the
deep model and the iteration of the optimization method. This
intrinsic similarity can partially explain why the deep model is
also suitable for the image restoration task. However, the trans-
formation parameters in the CNN model are adaptively learned
to implicitly fit the distribution of the training data set, which
makes them more professional for a specific task.

B. Problem Formulation

The noise degradation model in this paper is formulated as

Y = X + N (4)

where Y ∈ R
R×C×B is the measured HSI, R, C, and B stand

for the numbers of the row, column, and band respectively,
X is the desired clear HSI, and N is the noise in HSI, which
includes various noise components. Note that the goal of this
paper is to estimate the residual noise component N, not the
clear image, from the degraded image Y . The main reason is
that we adopt the residual learning idea from [19] and [22] to
train a residual mapping F(Y) = N. The restoration problem
is formulated as a regression task as follows:

JRecon = 1

2
�F(Y) − N�2 (5)

where F is the composite network mapping function of S.

Fig. 2. Illustration of one block. Each block contains the convolution, BN,
and nonlinear response.

C. Architecture of HSI-DeNet

In the proposed HSI-DeNet, we use a very deep con-
volutional network followed by [19], [50], and [53]. Each
convolutional layer consists of Md filters with the size of
3×3×N , except the first and the last output layer. The channel
of the first and the last output layer has to match the spectral
dimension of the input HSI. We use a 3×3 filters throughout
the network with stride 1, which has been demonstrated that
the decomposition of larger size filters into small-size filters
with deeper layers would make the model more discriminative
[19], [20], [22], [50], [53]. To avoid the boundary effect and
preserve the spatial size, we pad each layer with the same size
as the original image.

The architecture of the HSI-DeNet is shown in Table I.
Each block contains three components: convolutional, batch
normalization (BN), and RELU, as shown in Fig. 2. We denote
the Convolutional(C) + Batch normalization(B) + RELU(R)
block as CBR. The depth D of HSI-DeNet is 19 (including the
L2 loss layer). The main reasons for us to choose the depth as
19 are threefold. On the one hand, the depth in the CNN model
is similar to the iteration number in optimization-based meth-
ods. Many works [20], [54] have discussed their relationship
and design their deep architecture based on the optimization
solvers. Since the iteration number of the nonconvex problem
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TABLE I

DETAILED ARCHITECTURE DESCRIPTION OF THE HSI-DENET

is usually determined empirically, we also observe from the
experimental results that the depth 19 is very robust for our
HSI restoration task. On the other hand, we follow the widely
used VGG-nets [53] to set the depth of our HSI-DeNet as 19.
This depth can achieve well balance between training difficulty
and representation ability. Last but not least, our training image
size is 40×40, which is slightly smaller than the receptive field
of our model. This means our model could utilize the whole
contextual information of the given HSIs.

The BN layer is incorporated for avoiding the gradient
vanishing or divergence issue. And the RELU layer is utilized
for pursuing sparsity and also for its highly nonlinear ability.
Note that we do not contain any pooling layer in our network.
The main reason is that the image processing task is a
regression task, while the high level vision tasks are always
classification-based tasks. In image processing, we need to
estimate the pixel-level information. However, the pooling
layer would inevitably cause information loss. Therefore,
in the HSI-DeNet, we do not apply any pooling layer.

1) Residual Learning: Previous deep learning-based image
processing methods directly mapped the degraded image into
the clean one [55]–[57]. However, the gradient vanishing
issue restricts these methods to train a very deep model
with powerful representation. In this paper, we added a skip
connection between the input and the output, which means
that the network actually learns the difference between the
input and the output. This residual learning scheme proposed
by He et al. [22] figured out creative way to learn the
sparse residual image, not the image itself, since the sparser
gradient of the residual image was easier to be propagated.
The loss function of our network is 1/2 ×�N − f (Y)�, where
f is the network mapping function. Several pioneer works
have demonstrated its effectiveness in various fields [19]–[21],
[23], [50]. Therefore, it is natural for us to apply the residual
learning in HSIs’ restoration.

2) Dilated Convolution and Multichannel Filtering: It is
known that the more the contextual information CNN models,
the better the restoration results they obtain [50]. Modern
networks integrate multiscale contextual information, namely,
enlarge the receptive field of the network via designing deeper
layers [19], [53]. However, this may increase the difficulty

of the training procedure due to the gradient vanishing issue.
In this paper, we introduce the dilated convolution [24] into
the middle layers (Layer CBR7, 8, 9 with dilation 2), which
aggregates multiscale contextual information without losing
resolution or increasing the depth of the network. We can
observe from Table I that the receptive field of our model
is larger than the size of the image, which means we could
completely make use of both the local and the nonlocal
contextual information.

The classical networks, such as Alexnet [33], VGGnet [53],
and U-net [58], all employed the multichannel filtering strat-
egy, in which each layer contains multiple feature maps. These
models increased the number of the filters at the first few lay-
ers, and then reduced the number of the filters gradually. Such
a flexible manner greatly increases the representation ability
of the network. For HSIs with multiple spectra (corresponding
to multichannel in the network), multichannel filtering in
each layer becomes much more important, which undoubtedly
increases the representation ability for the spectral information.
As shown in Table I, we gradually increase the channels
from 10, 64, and 128 to 256, and then decrease it symmetri-
cally from 256, 128, and 64 to 10.

3) Training Details: We initialize the convolutional filters
with the Xavier method [22]. The learning rate is initially set
as 0.001 and decreased to a small value 0.00001. The momen-
tum and decay are fixed as 0.9 and 0, respectively. The ADAM
solver [59] is introduced to optimize the model. We trained
the model with 300 epochs with the batch size as 128.
We obtained the training data from the ICVL [60], which
includes 201 scenes. We cropped 500 subimages from them
as the training data set and 50 subimages as the test data set.
The training data were normalized to [0, 1]. Since the earlier
image bands (mainly from 400 to 450 nm) in ICVL contain
random noises, we just extracted the band 550–640 nm with
the interval 10 (namely ten bands) as the input. Note that the
training samples in our model are 500 (180 × 180) images.
However, since the CNN does not require fixed inputs,
we extracted 16 (40 × 40) subsamples via the sliding window
with stride 40 from each sample. Then, we augmented each
subsample eight times with flip and rotation. Therefore,
the total training samples (40 × 40 × 10) in our experiment
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Fig. 3. Comparison between the features extracted by (a) HSI-DeNet and (b) TV methods. It is evident that in each iteration/layer, the sparsity-based
shrinkage methods (here, we just give an example with TV) utilize the same features, while the HSI-DeNet could extract the hierarchical features.

are 500 × 16 × 8 = 64 000. If we further consider each
band as an image (compared with single image-based CNN
models), the final training samples would be regarded as
64 000 × 10 = 640 000. That is the main reason why our
training model works well with only 500 samples. In our
experiment, we did not observe obvious difference for the
training data ranging from 300 to 700. The MatConvnet
toolbox [61] is employed to train the HSI-DeNet.

4) Relationship With Previous Methods: Comparing with
the filtering-based methods, such as the wavelet, the learned
filters in the HSI-DeNet could be regarded as its data adaptive
version. The previous handcraft wavelets could only capture
the specific image structures, such as horizontal, vertical,
and diagonal information. While hundreds of various filters
in HSI-DeNet are more representative for the HSI structure,
the additional nonlinear response function further increases its
generalization ability.

Comparing with the sparsity-based optimization methods,
such as dictionary learning [35], TV [62], and low rank [40],
their relationships with the CNN have been discussed
in [20] and [54]. For example, the iteration of the shrinkage
can be unfolded and regarded as the nonlinear response in
the network. As shown in Fig. 3, in each phase (iteration
in optimization methods and layers in CNN, respectively),
the optimization-based methods employ the same transforma-
tion for the image, while the CNN extracts the different scale
and directional information gradually. Thus, we can roughly
regard the conventional methods as the shallow model, while
the CNN is the deep model with stronger representation.

D. Extension to Adversarial Network

The generator networks optimized based on the pixelwise
loss function, such as the mean squared error or L1, tend to
produce the oversmooth results [63], [64], since they mainly
focus on the pixelwise-level image differences. To exploit pri-
ors from the image level, we introduce the adversarial discrim-
inators for the generator. The generative network (described
in Section III-C) can be further incorporated in an adversarial

Fig. 4. Flowchart of the proposed HSI-DeGAN.

framework, by additionally incorporating with a discriminator.
An adversarial network [65] is a recent approach that has
shown remarkable performances to generate synthetic pho-
torealistic images. Generative adversarial networks (GANs)
are composed of two models that are alternatively trained to
compete with each other. The generator is trained to produce
the true data distribution pdata, so that the generated images
are difficult for the discriminator to differentiate from real
images. Meanwhile, the discriminator served as a classifier to
distinguish fake images generated by G from real images. The
objective function of the adversarial networks is expressed as
follows:

Jadver = EX∼PX [log D(X)] + EY∼PY [log(1 − D(G(Y)))]
(6)

where PY and PX denote the distributions of noise input Y
and real data X, G denotes the generator, and D represents
the discriminator.

We show the general flowchart of the proposed method
in Fig. 4. The proposed HSI-DeGAN mainly contains two
parts: the generator and the discriminator subnetwork. The red
arrow denotes the forward procedure, and the black arrow indi-
cates the backward propagation. The left green rectangular box
is the L2 reconstruction-based generator (Section III-C), which
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TABLE II

DETAILED DESCRIPTION OF OUR DISCRIMINATOR

can be regarded as the fidelity term in the optimization method,
since both of them are used to constrain the restored result that
should be consistent with the observation. The right orange
rectangular box is the adversarial perceptual loss-based dis-
criminator, which can be equivalent to the prior/regularization
term for further solution refine. Here, the discriminator makes
the distribution between the restored image and the ground
true indistinguishable, which can be regarded as the adaptively
learned prior for the data.

The input to the discriminator is a pair of images: a ground
truth image and a restored image by the generator. The output
of the discriminator is a binary value for the ground truth
image to be one and the restored image to be zero. The detailed
architecture of the discriminator is shown in Table II. Here,
the dilation of each layer is set as 1. We gradually decrease the
image size by introducing the stride. The whole loss function
of our network is defined as

J f = λ1JRecon + λ2JAdver (7)

where λ1 and λ2 are the weights to balance the effects of
different losses. The generator and the discriminator can be
trained adversarially/alternatively. The discriminator aims to
maximize the above objective, while the generator tries to
minimize the objective. Note that, in the testing phase, only
the generator network is required to obtain the clear image
that is as natural as the real image.

IV. EXPERIMENTAL RESULTS

A. Experimental Setting

We use the ICVL [60] as our training data set for all
tasks. The test data sets include the CAVE and ICVL. The
ICVL database images were acquired using a Specim PS
Kappa DX4 hyperspectral camera and a rotary stage for
spatial scanning. At this time, it contains 201 images and
will continue to grow progressively. Images were collected
at 1392 × 1300 spatial resolution over 519 spectral bands
(400–1000 nm at roughly 1.25-nm increments). The CAVE
database images were acquired using a Cooled CCD camera
(Apogee Alta U260). The database consists of 32 scenes
at 512 × 512 spatial resolution from 400 to 700 nm at
10-nm steps (31 bands total).

For the HSI-DeNets, we compare with block-matching
and 3-D filtering (BM3D) [66], parallel factor analysis
(PARAFAC) [44], LRMR [40], BM4D [18], tensor dictionary
learning (TDL) [14], intrinsic tensor sparsity regularization
(ITSReg) [15], and Laplacian regularized low-rank tensor
recovery (LLRT) [11]. We use the codes provided by the

authors downloaded from their homepages, and fine tune the
parameters by default or following the rules in their papers to
achieve the best performance. And once our manuscript has
been accepted, the training and testing code of our methods
can be downloaded from the homepage of the author.1

The PSNR, SSIM [67], erreur relative globale adimension-
nelle de synthese (ERGAS [68]), and spectral angle map
(SAM [69]) are employed for the quantitative assessment. The
PSNR and SSIM evaluate the spatial quality, and the ERGAS
and SAM assess the spectral quality. The larger the PSNR and
SSIM values are and the smaller the ERGAS and SAM values
are, the better the restored images are.

B. Simulated Noise Removal

We test four noisy cases: the random noise, the stripe noise,
the mixed random and stripe noise, and the single image.

1) Random Noise Removal: Here, we give two exam-
ples degraded with the additive Gaussian random noise with
zero mean and different variances. The BM3D and BM4D
[Figs. 5 and 6(c) and (f)] tended to introduce the unexpected
ringing artifacts. The LRMR [Figs. 5 and 6(e)] suffered from
the residual noise, since it has strong assumption on the
low-rank constraints of the multispectral inputs. The low-
rank tensor-based TDL, ITSReg, and LLRT worked well in
light noise case [Fig. 5(g)–(i)], while for heavy noise case
[Fig. 6(g)–(i)], they either left residual noise or oversmoothed
the HSI. In Figs. 5 and 6, the HSI-DeNet could remove the
noise satisfactorily and preserve clear details, such as the
ellipse region in Fig. 5 and rectangle regions in Fig. 6.

Moreover, with the increase in the noise level, the
HSI-DeNet obtained much more advantageous over other
methods in terms of the quantitative assessments. The main
reason is that, when the noise is overwhelmed in the HSIs,
the local, nonlocal self-similarity or spectral correlation has
been severely damaged. Thus, the performance of previ-
ous methods inevitably decreased rapidly. On the contrary,
the learning-based HSI-DeNet could infer the missing infor-
mation from the external data set, also benefitting from
its intrinsic tensor-based structural preserving ability. The
HSI-DeNet consistently obtained the best results for both
the spectral and spatial assessments. This demonstrated that
our HSI-DeNet could better preserve spectral integrity due
to the tensor-level operation, and also better preserve spatial
structural details due to the learned information from the
external data set.

2) Stripe Noise Removal: As far as we know, most
of the aforementioned HSI denoising cannot handle the
stripe noise. We compared the HSI-DeNet with the
state-of-the-art destriping methods: TV [34], unidirectional
variational model (UTV) [62], wavelet-Fourier adaptive fil-
tering (WFAF) [70], statistical linear destriping (SLD) [71],
low-rank multiple image decomposition (LRMID) [42], and
anisotropic spectral-spatial total variational (ASSTV) [3].
From Fig. 7(c)–(e) and (g), we can see obvious unexpected
artifacts. For the marked eclipse region of the unidirectional
model [Fig. 7(f) and (h)], the original linear pattern with

1http://www.escience.cn/people/changyi/index.html
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Fig. 5. Simulated random noise removal results at 550-nm band under the noise level σ = 20 on the CVIL data set. We show the PSNR value and SSIM
results. (a) Original image. (b) Degraded image. Denoising results by (c) BM3D, (d) PARAFAC, (e) LRMR, (f) BM4D, (g) TDL, (h) ITSReg, (i) LLRT,
and (j) HSI-DeNet.

Fig. 6. Simulated random noise removal results at 550-nm band under the noise level σ = 50 on the CVIL data set. (a) Original image. (b) Degraded image.
Denoising results by (c) BM3D, (d) PARAFAC, (e) LRMR, (f) BM4D, (g) TDL, (h) ITSReg, (i) LLRT, and (j) HSI-DeNet.

the same direction as the stripe has also been removed. The
result of our HSI-DeNet is with satisfactory visual appearance.
Moreover, the image structure has been preserved intactly. This
result strongly demonstrates that the CNN has more powerful
representation, which could better distinguish the stripe from
the image structure.

3) Mixed-Noise Removal: The random noise and the stripe
noise always co-exist in the real HSI. In this section, we test
the performance of our HSI-DeNet under the mixed-noise
case. The results are shown in Fig. 8. We observe an interesting

phenomenon that the state-of-the-art HSI restoration method
could only handle the random noise and alleviate the stripe
noise. However, they cannot totally remove the stripe noise,
as shown in Fig. 8(c)–(i). On the contrary, in Fig. 8(j), the
HSI-DeNet could simultaneously remove both the random
and the stripe noise with better visual appearance. This
demonstrates that explicit modeling of the mixed noise is
inappropriate. Implicit modeling via the CNN offers a new
perspective for this complex problem. Moreover, their weak
effect to the stripe noise heavily depends on the spectral
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Fig. 7. Simulated nonperiodical stripe noise removal results at 550-nm band under the stripe intensity S = 20 on the CVIL data set. (a) Original image.
(b) Degraded image. Destriping results by (c) TV, (d) WFAF, (e) SLD, (f) UTV, (g) LRMID, (h) ASSTV, and (i) HSI-DeNet. (j) Estimated stripe component.

Fig. 8. Simulated mixed-noise removal results at 550-nm band of image Toy under the noise level σ = 20 and S = 20 on the CAVE data set.
(a) Original image. (b) Degraded with mixed noise. Restoration results by (c) BM3D, (d) PARAFAC, (e) LRMR, (f) BM4D, (g) TDL, (h) ITSReg, (i) LLRT,
and (j) HSI-DeNet.

correlation in HSIs. For the mixed noise in the single image,
previous methods even do not consider this situation. We show
in Section IV-B4 that the HSI-DeNet could squeeze more
spatial information and perfectly handle it.

4) Single-Image Mixed-Noise Removal: To the best of
our knowledge, few works have considered the single-image
mixed-stripe and random noise removal issue, except the
work [72]. Such a mixed-noise removal problem is extremely
difficult. For one thing, only the spatial information is pro-
vided. For another, both the random noise and the stripe
noise should be modeled simultaneously. For the conventional

optimization-based method, complex and elaborate designing
of the cost function is usually required, which makes trans-
formed low-rank (TLR) [72] hard to be optimized with very
long testing time. In this paper, we show that the HSI-DeNet
could easily remove the mixed random and stripe noise in a
single image, as shown in Fig. 9. The result of HSI-DeNet
is more visual pleasure with higher PSNR and SSIM values.
More importantly, the TLR took several minutes for this result,
while the HSI-DeNet obtained the result within less than 1 s.

5) Comparison With Deep Method: Since there are few
deep models for HSIs’ restoration, we compare our HSI-DeNet
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TABLE III

SPATIAL AND SPECTRAL QUANTITATIVE ASSESSMENTS OF DIFFERENT METHODS UNDER DIFFERENT NOISE LEVELS. THE R20_S20
MEANS THE SIMULTANEOUS RANDOM NOISE WITH VARIANCE 20 AND STRIPE NOISE WITH INTENSITY 20

Fig. 9. Simulated mixed-noise removal results in single image under noise
level σ = 20 and S = 20. (a) Original image. (b) Degraded with mixed noise.
Restoration results by (c) TLR and (d) HSI-DeNet.

with DnCNN [19], which is a single image-based method for
the natural image. We slightly change the input and output
channels of the model to accommodate the HSIs. For the fair
comparison, both of our method and modified DnCNN are
trained with the same data set on ICVL. The hyperparameters
are set as the rule in the original paper. Here, we give both
the visual and quantitative comparison.

We compare the denoising results on ten ICVL subimages
with the size of 380 × 380 × 10. We show one image as an
example in Fig. 10. From the spatial visual performance, our

Fig. 10. Quantitative and qualitative comparison between DnCNN and
HSI-DeNet. (a) Original image. (b) Noisy image. (c) DnCNN. (d) HSI-DeNet.
(e) Spectral reflection of one pixel at (170, 220). The table shows the
quantitative results.

method and DnCNN are quite similar to each other. From the
spectral features, the spectral curve of our method is obviously
closer to that of the original one. We could also obtain the
same conclusion from the quantitative assessments. It is worth
noting that, due to the additional multichannel strategy, our
model is more representative for the spectral features. That is
the main reason why our model is more suitable for HSIs’
restoration task. And along with the dilated convolution, our
method also obtains better performance in the spatial structural
reconstruction.

6) Quantitative Comparison: We show the quantitative
comparison results of Figs. 5 and 6 in Table III. We can
observe that the HSI-DeNet obtains the best results under
different noise levels. Moreover, with the increase in the noise
level, the advantages of HSI-DeNet over other methods are
more. The main reason is that the other methods all utilize
the local or nonlocal information from the degraded image
itself. When the noise level increases, the internal information
has been heavily damaged, resulting in the degeneration of
their performances. On the contrary, our HSI-DeNet could
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Fig. 11. Real HSI image urban noise removal results. (a) Band 138. Restoration results by (b) BM3D, (c) PARAFAC, (d) LRMR, (e) BM4D, (f) TDL,
(g) ITSReg, (h) LLRT, (i) HSI-DeNet with single band as input, and (j) HSI-DeNet with multiple bands as input.

benefit from the external data set for better restoration
performance.

C. Real Noise Removal

Here, we select the widely used urban data set to test
the performance of the HSI-NeDet in real HSIs. Urban is
one of the most widely used hyperspectral data. There are
307×307 pixels, each of which corresponds to a 2×2 m2 area.
In this image, there are 210 wavelengths ranging from
400 to 2500 nm, resulting in a spectral resolution of 10 nm.
We extract ten bands (bands from 129 to 138 as the input).
Only a few bands in the urban data set are affected by
slightly random and stripe noise (mostly horizontal). To better
show the results, we increased the noise level by adding
both the random and stripe noises (vertical) in all the bands,
as shown in Fig. 11(a). It is worth noting that the result of
Fig. 11(i) is corresponding to the HSI-DeNet with only the
single image band 138 as the input. The other methods are
with 10 image bands as the input. From Fig. 11, we have two
main observations. First, our single image-based [Fig. 11(i)]
and multiple image-based [Fig. 11(j)] HSI-DeNet all obtain
the best visual appearance, while the results of other methods
are with unexpected artifacts, such as the stripe residual
in Fig. 11(b), (f), (g), and (h). Second, the result of Fig. 11(i)
is a bit oversmoothed, compared with Fig. 11(j). This is a
powerful proof that our HSI-DeNet could benefit from the
spectral correlation in HSIs.

Furthermore, in Fig. 12, we show that our HSI-DeNet
could also be applied to other remote sensing images, such
as moderate resolution imaging spectroradiometer (MODIS).
Here, we use the MODIS Terra image band 30 as the test
image [Fig. 12(a)]. Moreover, from the satisfactory result
in Fig. 12(b) and also in Fig. 11(i), we could conclude that the
HSI-DeNet fully utilizes the spatial information and benefits
from the learned pattern from the external data set. This

Fig. 12. Extension to the MODIS image mixed-noise removal. (a) Terra
MODIS image band 30. (b) HSI-DeNet.

might give a new insight for conventional model-based HSI
restoration methods.

D. Study of HSI-DeNet

1) Effectiveness of the Discriminator: We performed an
experiment to validate the effectiveness of the discriminator.
As shown in Fig. 13, we compared the denoising result of
HSI-DeNet [Fig. 13(d)] with its corresponding GAN
[Fig. 13(e)]. Compared with other methods, the HSI-DeGAN
obtained the image with the sharper edge and fewer artifacts
from the visual appearance. However, the quantitative assess-
ments of HSI-DeGAN are a little inferior to other methods.
This is the main characteristic of the adversarial network that
it could obtain a photorealistic image but a poor quantitative
result [63], [64].

2) Effectiveness for Postprocessing: We use the unsuper-
vised k-mean classification method to demonstrate that the
proposed method can facilitate the subsequent processing. The
number of the classification is five. The maximum iteration
is set five times. Fig. 14 shows the denoising and classifi-
cation results. The top row is the degraded Salinas image
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Fig. 13. Effectiveness of the discriminator. (a) Original image. (b) Degraded image. Denoising results by (c) BM4D, (d) HSI-DeNet, and (e) HSI-DeGAN.
(First row) Whole image. (Second row) Zoomed-in-view results.

Fig. 14. Classification results by the k-mean classification method. (First row)
Images. (Second row) Corresponding classification results.

and the recovery results by multihypothesis prediction [73],
LRMR [40], and the proposed method. The bottom row is
the corresponding classification results. In Fig. 14(c) and
(d), obvious classification errors can be seen in the original
classification result. On the contrary, the restored classification
image in Fig. 14(e) does not contain any random or line
artifacts. It can be seen that the classification results are sig-
nificantly improved after the destriping and denoising process.
This demonstrates that the restoration process is successfully
applied.

Fig. 15. Real AVIRIS image denoising results. Although our model is
trained on the ICVL data set, it works well for numerous simulated and real
HSI data sets with different spectral bands ranging. These experiments could
demonstrate the generalization ability of our model to some extent.

3) Generalization Analysis: Note that our model is trained
on the ICVL data set. We have tested our trained model for
various data sets, including the ICVL, CAVE, and urban.
The trained model worked well for the test images, such
as the urban data, with different spectral bands ranging
from 1690 to 1780 nm. And our method could also be well
applied to other real HSI data, such as the Indian Pine shown
in Fig. 15. These experiments demonstrate the generalization
ability of our model for various HSIs. In fact, our model is
sensitive to the noise level and category. We will discuss the
limitations in Section IV-D.4.

Although the trained model on ICVL is robust to vari-
ous HSIs, we perform an experiment to illustrate that the
fine-tuning strategy could further boost the final restoration
performance. We trained our model on ICVL and then fine-
tuned it on the CAVE (32 scenes) where 90% is used as
training and 10% as test. We show the quantitative results Toy
under noise level σ = 20 and S = 20 between without and
with fine-tuning in Table IV. We can observe that fine-tune
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TABLE IV

EFFECTIVENESS OF FINE-TUNING STRATEGY

Fig. 16. Relationship between the training loss and depth of our network.

TABLE V

QUANTITATIVE ANALYSIS OF THE RELATIONSHIP BETWEEN THE TRAIN-
ING LOSS AND DEPTH OF OUR NETWORK

obviously improves the restoration performance in terms of
the spectral information. That is to say the fine-tuned model
is more adaptive to the specific imaging system. However, it is
a little surprising that the PSNR value is even slightly inferior
to that of the without fine-tuning, and the SSIM has been
slightly improved. We speculate that this is due to the lack
of training samples in CAVE. Moreover, a large part of the
images in CAVE is all dark with zero values. Thus, the fine-
tuned model may be underfitting due to the insufficient spatial
information. The experiment can demonstrate that the fine-
tuning strategy is a very effective way for the HSIs data set
with slightly different distribution.

4) Depth of the Network: We also analyze the influence of
the number of the convolutional layers. In Fig. 16, we show
the training loss of the model with different depths. Here,
we just choose the model with 3, 5, 10, and 18 layers as
a representation. We have two observations here. First, at the
first 50 epochs, the training loss of the model with fewer layers
is usually lower. We guess that the shallow models are easier
to be trained. Second, with sufficient training, the deeper the
model is, the lower the training loss is. Moreover, we give the
quantitative assessment in Table V. That is to say the depth of
the model does facilitate the training of the HSIs, and improve
the restoration performance.

5) Running Time: We test the running times of various
methods for different HSI sizes, including both the CPU and
GPU versions of the HSI-DeNet. The experiments are per-
formed with the personal computer with MATLAB 2014a, one

Fig. 17. Comparison with the state-of-the-art HSI-DeNets in terms of both
speed and performance for image with size 180×180×10.

Titan X GPU, an Intel i7 CPU at 3.6 GHz, and 32-GB memory.
As shown in Table VI, even the CPU version of the HSI-DeNet
is much faster than that of the other methods. Moreover,
the GPU version of HSI-DeNet is almost 100 times faster
than the CPU version. More importantly, with the increase
in the HSIs’ size, the running time of the GPU version of
HSI-DeNet does not increase too much, while the running
times of the others are more and more unacceptable. This
property makes our method extremely suitable for HSIs’
processing, since the data size of HSIs is always very large.
We jointly compare the running time and restoration per-
formance of all methods, as shown in Fig. 17. Our method
achieves the best performance in both the speed and the
PSNR value.

6) Regularization Parameter: Equation (7) contains two
terms: the reconstruction term and the adversarial term. Look-
ing back at the framework flowchart in Fig. 4, the physical
meaning of the first term is to guarantee the intensity similarity
between the restored image and the ground truth. The physical
meaning of the second term is to work as a learnable discrim-
inative prior, which desires the distribution of restored data to
be adaptively similar to that of the ground truth. Keeping this
in mind, it is a guidance for us to set the parameters in (7) and
control the importance of each term. Normally, we set λ1 = 1
and adjust the regularization parameter λ2.

Here, we explore how the regularization parameter λ2 influ-
ence the reconstruction performance. We show the training
loss of the reconstruction term by changing λ2 in [0.001, 0.01,
0.1, 1]. In Fig. 18, with the increase in λ2, the training loss of
the reconstruction term gradually increases. This is reasonable.
With the increase in λ2, the model will pay less attention
to the reconstruction error. That is to say, the reconstruction
error becomes larger, and the PSNR value gradually decreases
with the increase in λ2. For the extreme case, when λ2 = 0,
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TABLE VI

RUNNING TIME (SECONDS) COMPARISON UNDER DIFFERENT IMAGE SIZES

Fig. 18. Analysis of the regularization parameter λ2. (a) Loss curve of the
generator. (b) Loss curve of the discriminator.

(7) degenerates to the conventional reconstruction loss as
in (5). However, as the goal of the second term controlled
by λ2 is not PSNR value-oriented, it is for the perceptual
appearance, as shown in Fig. 13. As a tradeoff, we empirically
set λ2 = 0.01.

7) Training Convergence: We show the training loss of
both the generator and the discriminator to judge the train-
ing convergence. For the generator, we can observe from
Figs. 16 and 18(a), the training loss decreases and converges to
a very low value at different depths and different parameters.
For the discriminator, we used the discriminator similar to
that of the DCGAN [74]. However, the loss of the DCGAN is
meaningless [74]. We plot the adversarial loss under different
values of λ2 in Fig. 18(b). As we expected, the loss curve
does not exhibit any regularity. As far as we know, only the
WGAN [75] could provide the reasonable curve/guidance for
the discriminator convergence judgment. We would like to try
more sophisticated GAN, such as WGAN as our future work.

8) Limitation: Right now, the trained HSI-DeNet is only
suitable for the specific noise level. For example, as shown
in Fig. 19, if we want to restore the degraded HSI with
noise level σ = 50, we have to use the trained HSI-DeNet
with the HSI data degraded with σ = 50. The denoising
result in Fig. 19(b) by HSI-DeNet_50 is with satisfactory
appearance. However, if we import the noise image with either
σ = 25 or σ = 75 to the σ = 50 based trained HSI-DeNet,
we could observe that the results [Fig. 19(c) and (d)] are either
oversmoothed or with residual noise. This heavily restricts the
application of our HSI-DeNet for real HSIs with the unknown
noise level. Fortunately, the recent studies are working toward

Fig. 19. Limitation of our HSI-DeNet. (a) Degraded image in CVIL with
random noise σ = 50. The denoising result by the HSI-DeNet trained with
HSI data degraded with (b) σ = 50, (c) σ = 25, and (d) σ = 75.

this direction by training one single network for the general
restoration task [76], [77]. We will take this point as our future
work.

The training of our HSI-DeNet is better to be performed on
the GPU platform. Although our model could also be trained
on the CPU, it requires several days to be completed. Larger
training data sets are needed to improve the generalization
of our model to accommodate all kinds of complex noise
category and HSI data. Right now, we do not train one single
model for all situations. Instead, we train each model for one
specific task. The trained model obtains its best performance
for the specific noise category.

V. CONCLUSION

In this paper, we introduce the deep CNN to remove the
mixed noise in the HSIs. The proposed method significantly
advances the HSIs’ restoration field in three aspects: com-
plex noise modeling, spectral-spatial structure preserving, and
running time. The implicit yet powerful representative ability
of the CNN enables us to better model the mixed noise
in the HSIs. The learned 2-D filters with multiple channels
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inherently match the multidimensional property of HSIs, better
preserving the spatial-spectral structure correlation. Last but
not least, the simple operations in the HSI-DeNet make the
algorithm extremely fast for testing. Our method has been
tested on various simulated and real HSIs, and achieved better
restoration performance than the compared methods in terms
of both quantitative and qualitative assessments. In the future,
we would like to introduce the real 3-D CNN [78] into the
HSIs’ restoration, and also extend the CNN method to other
interesting HSI tasks, such as super-resolution, unmixing,
and so on.
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