
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022 5616512

On-Orbit Real-Time Variational Image Destriping:
FPGA Architecture and Implementation

Liqun Chen, Yi Chang , Member, IEEE, and Luxin Yan , Member, IEEE

Abstract— On-orbit real-time image processing is of increas-
ing demands due to requirements for quick-response missions.
Image destriping is usually an important pre-processing step
to improve image quality in practice. The unidirectional vari-
ational models have shown impressive destriping performance.
However, they are not easy for real-time implementation for high-
computation complexity and there are few attempts for hardware
implementation. This article is the first hardware implementation
of variational image destriping algorithm, which achieves high
throughput for large-swath remote-sensing images. In this article,
a fully pipelined hardware architecture is proposed. First, the
involved iteration loop is unrolled and a coarse-grained paral-
lelism is obtained. Second, for each deployed iteration computa-
tion blocks (ICBs), a dedicated timing arrangement is designed
to alleviate the bottleneck caused by the data dependency within
each ICB, obtaining a fine-grained parallelism. Moreover, to fur-
ther optimize the critical path, an approximate simplification
scheme is proposed, saving the resource usage and reducing
computing delay. The proposed architecture is implemented and
verified on a XILINX 6vcx240t field programmable gate array
(FPGA); it achieves a maximum frame rate up to 41.9 frames/s
with delay of only tens of row cycles for 8-bit 2048×2048 images.
It performs all the processing on the pixels in raster scan order
on-the-fly as they are being transmitted from camera payload,
which significantly facilitates on-orbit real-time processing of
large-swath remote-sensing images with high data rate.

Index Terms— Field programmable gate array (FPGA)
implementation, fully pipelined architecture, image destriping,
on orbit, split Bregman method.

I. INTRODUCTION

NOWADAYS, the significant technological progresses
in satellite imaging instruments lead to a continual

increasing of the spatial, spectral, temporal, and radiomet-
ric resolutions of the remote-sensing images. Therefore, the
limited downlink capability makes the timely missions, such
as maritime search, disaster monitoring, and military surveil-
lance [1]–[8], should be performed on orbit in real time.
In practice, the stripe noise commonly exists in remote-sensing
images and severely degrades the image quality [9]–[12],
limiting the performance of the further processing, so it is
critical to suppress the stripes before subsequent processings.

Manuscript received August 18, 2021; revised December 10, 2021 and
December 31, 2021; accepted December 31, 2021. Date of publication
January 5, 2022; date of current version March 8, 2022. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61971460. (Corresponding author: Luxin Yan.)

The authors are with the National Key Laboratory of Science and Tech-
nology on Multispectral Information Processing, School of Automation,
Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: yanluxin@gmail.com).

Digital Object Identifier 10.1109/TGRS.2022.3140428

In past decades, many efforts have been made for remote-
sensing image destriping. Most of them are devoted to destrip-
ing algorithms, but related works on real-time image destriping
are rarely reported. This work mainly focuses on implementa-
tion of high-performance on-orbit real-time image destriping,
more specifically, it is the first hardware implementation for
variational model-based method by far.

The image destriping methods can be roughly classified
into four categories: digital filtering technique-based methods
[13]–[16], matching-based methods [17]–[20], variational
model-based methods [21]–[31], and deep learning-based
methods [32]–[36]. The first two categories are of relatively
low-computation complexity and easy for hardware implemen-
tation, but their destriping performances are very limited. The
third category of methods has obtained excellent destriping
performances, outperforming the former two categories in
both qualitative and quantitative evaluations, but at the cost
of higher computation load. The fourth category of methods
could obtain competitive destriping performances with the help
of big data learning. Since the available on-orbit resources
are constrained in terms of size, weight, and power, deep
learning-based methods at present are not appropriate options
for their high overhead of hardware resources and power.
In this work, considering the trade-off between the destriping
performance and computation load, we implement a varia-
tional model-based method to cope with on-orbit single-image
destriping task, not including hyperspectral or multispectral
images.

However, the variational model-based methods usually need
repetitive iterations to converge to the optimal solution, which
are of high-computational complexity. For instance, the gra-
dient descent optimization was used to obtain the solution
in [23], and split Bregman iteration method was used in [25] to
achieve faster convergence to solve the minimization problem.
Running C++ simulation experiments with the method in [25]
on a 3.2 GHz Intel Core i7-8700 with six cores and 16 GB
of RAM to destripe a MODIS image in size of 512 × 512,
the runtime is about 2.4 s. It indicates that the variational
methods are performed far from real time even using a modern
high-performance general-purpose CPU on the ground, let
alone the resource-limited computing platform on orbit. This
is because these variational methods need numbers of repet-
itive iterations, and exhibit strong data dependencies within
the computation procedures. With modern multi-core CPUs,
the iterative algorithms can only be implemented in coarse-
grained parallelism, each core executes operations serially,
and necessary data interaction between cores will cause high

1558-0644 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8542-5937
https://orcid.org/0000-0002-5445-2702

5616512 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

latency, degrading the performance. Some works [37], [38]
were devoted to exploit the potential parallelism in iterative
algorithms, and designed parallel hardware architectures on
field programmable gate array (FPGA) platforms by taking
advantages of its abundant parallel resources. Meanwhile,
FPGA platforms consume much less power than CPU or GPU
platforms, and are widely applied on orbit. Therefore, we are
motivated to exploit the intrinsic parallelism of the variational
model-based methods, and propose a high-throughput, low-
delay, and fully pipelined hardware architecture for real-time
image destriping with a unidirectional variational model. The
main ideas and contributions are threefold.

1) To the best of our knowledge, it is the first high-
performance hardware implementation of variational
image destriping method for large-swath remote-sensing
images with high data rate. It executes all the process-
ings on the pixels in raster scan order on-the-fly as they
are being transmitted from camera payload, achieving
a throughput up to 176 MPixels/s with only tens of
row cycles delay in XILINX 6vcx240t FPGA plat-
forms, which significantly facilitates on-orbit real-time
applications.

2) A fully pipelined iteration unrolled hardware archi-
tecture with multiple cascaded iteration computation
blocks (ICBs) for split Bregman method is proposed,
obtaining both coarse- and fine-grained parallelisms, and
alleviating the inherent data dependencies between and
within iterations. Consequently, it greatly improves the
overall throughput, eliminates huge frame buffers usage
and thus decreases processing delay (PD).

3) A dedicated timing arrangement and an approximate
simplification scheme for one single ICB are proposed
for pipelined implementation, which jointly improve the
processing speed as well as decreasing the resource
consumptions. As a result, for the proposed iteration
unrolled architecture with multiple cascaded ICBs, the
overall throughput is further improved and the resource
consumptions are reduced in practice.

The rest of this article is organized as follows. Section II
introduces the unidirectional destriping method and the
parallelism analysis. Section III discusses the parameters
determination and the finite precision effects. The hardware
architecture is presented in Section IV. The experimental
results of the proposed design are provided in Section V.
Finally, the conclusion is given in Section VI.

II. UNIDIRECTIONAL VARIATIONAL DESTRIPING METHOD

AND PARALLELISM ANALYSIS

A. Unidirectional Variational Destriping Method

Different from the random noise, stripe noise exhibits note-
worthy directional characteristic. Unidirectional variational
model effectively exploits this characteristic and achieves
impressive destriping results [25], [26]. In this work, we con-
sider vertical stripes and a destriping model with unidirectional
variational as

min
u

1

2
�u − Is�2

2 + λ1

∥∥∇yu
∥∥

1 + λ2�∇x(u − Is)�1 (1)

where u denotes the desired clear image, Is stands for the
striped image, and the symbols ∇y and ∇x are the derivative
operators across and along the stripes, respectively. The second
and third terms are the unidirectional variational regularization
terms, penalizing the �1-norm of the gradient across the stripes,
and constraining the �1-norm of the difference between the
gradients along the stripes of the clear and striped images.
The parameters λ1 and λ2 are the regularization coefficients.
The model (1) is an improved version of the model in [23],
in which the first data fidelity term is introduced to preserve
the image intensities. Moreover, the model (1) is a simplified
version of our previous model in [25]. In comparison, the
framelet regularization term is withdrawn for lowering the
computational complexity at the cost of slight performance
decrease (about 1–2 dB loss in PSNR [25]).

B. Numerical Algorithm

As with the work in [25], we use split Bregman method [39]
to solve �1-norm regularizations due to its two advantages.
First, it avoids the nondifferentiable points especially for the
�1-norm cases. Second, it can converge quickly with less
memory usage, which makes it attractive for large-swath
remote-sensing images.

The main idea of split Bregman method is to convert the
unconstrained minimization problem on u by introducing two
auxiliary variables dy = ∇yu and dx = ∇x(u − Is). The
minimization of (1) is equivalent to the constrained problem

min
u

1

2
�u − Is�2

2 + λ1

∥∥∇yu
∥∥

1 + λ2�∇x(u − Is)�1

s.t. dy = ∇yu, dx = ∇x(u − Is). (2)

By applying Bregman iteration, the problem (2) can be
further transformed into an unconstrained minimization

min
u,dx,dy

1

2
�u − Is�2

2 + λ1

∥∥dy

∥∥
1 + λ2�dx�1

+α

2

∥∥dy − ∇yu − by

∥∥2
2 + β

2
�dx − ∇x(u − Is) − bx�2

2 (3)

where α and β are Bregman penalization parameters, and the
variable bx, by are determined via Bregman iteration. Obvi-
ously, the minimization problem (3) can be further converted
to three subproblems.

1) The u-related subproblem is

min
u

1

2
�u − Is�2

2 + α

2

∥∥dy − ∇yu − by

∥∥2
2

+β

2
�dx − ∇x(u − Is) − bx�2

2. (4)

Equation (4) is a convex function with three �2-norm terms,
thus we can directly employ the differentiation with respect
to u. Then the minimization leads to the following equation:
(u − Is) + α

(∇T
y ∇yu − ∇T

y

(
dy − by

))
+ β

(∇T
x ∇xu − ∇T

x (dx − bx + ∇xIs)
) = 0 (5)

then it can be transformed into(
I + α∇T

y ∇y + β∇T
x ∇x

)
u

= Is + α∇T
y

(
dy − by

) + β∇T
x (dx − bx + ∇xIs) (6)

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ON-ORBIT REAL-TIME VARIATIONAL IMAGE DESTRIPING: FPGA ARCHITECTURE AND IMPLEMENTATION 5616512

where ∇T
y and ∇T

x are the transposition operators of ∇y and
∇x, respectively. I denotes an identity matrix with the same
size as u. Equation (6) can be solved with a closed-form
solution by the fast Fourier transform (FFT), but it requires all
the elements of an image to be involved in the transforming
computation, leading to huge memory usage and computation
delay. Therefore, FFT is not appropriate for hardware real-time
implementation. Here we choose direct discretization to solve
u-related subproblem. Assuming an image to be a 2-D vector
of size M ×N and stripes as vertical, the gradient computation
can be given as backward difference by

∇xu(i, j) =
{

u(i, j) − u(i − 1, j), i = 2, 3, . . . , M

0, i = 1
(7)

∇yu(i, j) =
{

u(i, j) − u(i, j − 1), j = 2, 3, . . . , N

0, j = 1.
(8)

And their corresponding transposition operators ∇T
y and ∇T

x
can be given as forward difference by

∇T
x u(i, j)=

⎧⎪⎨
⎪⎩

u(i, j)−u(i +1, j), i = 1, 2, . . . , M − 1

0, i = M

(9)

∇T
y u(i, j)=

⎧⎪⎨
⎪⎩

u(i, j)−u(i, j +1), j = 1, 2, . . . , N − 1

0, j = N.

(10)

The second-order difference operators ∇T
x ∇x and ∇T

y ∇y can
be given by

∇T
x ∇xu(i , j) =

⎧⎪⎨
⎪⎩

2u(i , j) − u(i + 1, j) − u(i − 1, j),

i = 2, . . . , M − 1

0, i = 1,M

(11)

∇T
y ∇yu(i , j) =

⎧⎪⎨
⎪⎩

2u(i , j) − u(i , j + 1) − u(i , j − 1),

i = 2, . . . , N − 1

0, i = 1,N.

(12)

Finally, with (7)–(12), (6) can be discretized to the
formulation as

u(i, j)(1 + 2α + 2β)

= α
(
u(i, j − 1) + u(i, j + 1) + dy(i, j)

− dy(i, j + 1) − by(i, j) + by(i, j + 1)
) + β(u(i − 1, j)

+ u(i +1, j)+dx(i, j)−dx(i +1, j)−bx(i, j)+bx(i +1, j)

− Is(i − 1, j) − Is(i + 1, j)) + Is(i, j)(1 + 2β). (13)

2) The dx-related subproblem is

min
dx

λ2�dx�1 + β

2
�dx − ∇x(u − Is) − bx�2

2 (14)

which can be solved by a shrinkage operator as

dx = shrink

(
∇x(u − Is) + bx,

λ2

β

)
(15)

where

shrink(r, ξ) = r

|r | ∗ max(r − ξ, 0). (16)

Algorithm 1 Unidirectional Variational Image Destriping
Input data Is, parameters λ1,λ2,α,and β.
Initialize u0 = Is, dx = 0, dy = 0, ε = 10−3.

while (
∥∥uk − uk−1

∥∥/
∥∥uk

∥∥ > ε and k < Nmax) do
1. Solve uk by (13)
2. Update dk

x , dk
y by (15) and (17)

3. Compute bk
x , bk

y by (18)
end while

Output Destriped Image=uk

The shrinkage operator is a soft threshold method proposed
by [40], which is fast and needs only a few operations during
the update of dx. Similarily, the dy-related subproblem can
also be addressed by a shrinkage operator

dy = shrink

(
∇yu + by,

λ1

α

)
. (17)

Finally, the Bregman variables can be updated in the fol-
lowing way:{

bk
x = bk−1

x + (∇x
(
uk − Is

) − dk
x

)
bk

y = bk−1
y + (∇yuk − dk

y

)
.

(18)

With the equations above, the complete destriping procedure
can be summarized as listed in section entitled Algorithm 1,
in which the three subproblems are solved alternately. Using
Gauss–Seidel iteration, faster convergence can be achieved
to solve the three subproblems when compared with Jacobi
iterative method [26], [41]–[43].

C. Data Dependencies and Parallelism Analysis

To exploit the intrinsic parallelism of the destriping method
illustrated in Algorithm 1, we have comprehensively analyzed
every procedure throughout the numerical solution, and two
levels of iterations have been explored: 1) the outermost loop
which repeatedly performs a series of computations on the
input/intermediate matrices and 2) the dedicated computations
aiming at each single pixel and traversing every element in
the input/intermediate matrix. Therefore, we can fully exploit
the spatial parallelism potential inside the employed destriping
approach with the two characteristics above. First, it is notice-
able that the input and output of each iteration in the outermost
loop are all matrices of same size, and each iteration receives
the output matrix from the previous iteration as their input,
thus we can unroll all these iterations and instantiate them in
cascade to obtain a coarse-grained parallelism. Second, in each
iteration, the three steps of the split Bregman method all
require only a portion of the input data matrix, moreover, the
relative positions of the elements involved in the computation
of any (x,y) element do not change across the input data
matrix. Thus, we can instantiate the three computational steps
in each iteration only for once to compute the elements of the
input matrix sequentially. Thirdly, the dependency relations
among the three computational steps indicate that, the step
of solving dk

x , dk
y relies on the updated result of the step of

solving uk , and the step of solving bk
x , bk

y also requires the

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

5616512 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

updated results from the step of solving dk
x , dk

y . Thus, this
feature suggests an implementation in fully pipelined manner
to achieve a fine-grained parallelism.

III. PARAMETERS, ITERATIONS, AND FINITE

PRECISION EFFECTS

A. Parameter Choice

In the numerical algorithm above, there are four parameters
λ1, λ2, α, and β to be predefined. Obtaining optimal values
for them is not straightforward. We select the appropriate
values for parameters through simulated experiments with
respect to 8-bit images. To obtain simulated striped images,
a set of 256 × 256 clear original remote-sensing images were
chosen and added with different levels of stripe lines. Three
discontinuous stripe lines per ten lines with magnitude ranging
from 2 to 7 were added and treated as weak stripes, five
successive stripe lines per ten lines ranging from 2 to 13 were
treated as medium stripes, and eight successive strip lines per
ten lines from 2 to 25 as severe stripes. For assessing the
quality of destriped images, peak signal-to-noise (PSNR) is
used

PSNR = 10log10

(
MAX2

�u − Is�2

)
(19)

where MAX is the maximum value of the image pixels. Higher
value of PSNR means better image quality.

The experiments with respect to PSNR varying λ1, λ2, α,
and β on images with different stripe levels have been carried
out, in which the value of one parameter was changed while
other three were fixed. The experiment results are shown
in Fig. 1, in the case of weak stripes, the PSNR stabilizes
when λ1 ∈ [10, 30], λ2 ∈ [245, 700], α ∈ [0, 30], and
β ∈ [100, 200], so optimal values can be selected from these
intervals. In the case of medium stripes, the range of optimal
parameters are chosen as λ1 ∈ [30, 90], λ2 ∈ [500, 1400],
α ∈ [0, 15], and β ∈ [80, 200]. In the case of severe stripes,
the optimal intervals are λ1 ∈ [120, 180], λ2 ∈ [960, 1600],
α ∈ [5, 20] and β ∈ [110, 200]. To reduce the computational
complexity and overhead in the hardware implementation, it is
natural to select the parameters λ1, λ2, α, and β as power of 2.
So we set regularization parameters λ1 = 16, λ2 = 256 for
weak-striped images, λ1 = 64, λ2 = 512 for medium-striped
images, and λ1 = 128, λ2 = 1024 for severe-striped images.
As for Bregman penalization parameters, we set α = 16 and
β = 128 for all three levels of stripes.

Benefited from the usage of split Bregman method and
Gauss–Seidel iteration, a faster convergence to solution can be
achieved, making it easier to unroll the iterations. For hardware
implementation, the number of iterations should be fixed.
Therefore, we have carried out the experiments on the number
of iterations versus the mean square error (MSE), which is
the mean square error between the images obtained from
two adjacent iterations. The results are shown in Fig. 2(a).
For the weak and medium stripe cases, the value of MSE
tends to stabilize after about 10 and 15 iterations, respectively.
As for the severe stripe cases, the minimum optimal number
of iterations indicates 20.

Fig. 1. (a) PSNR versus parameter λ1. (b) PSNR versus parameter λ1.
(c) PSNR versus parameter α. (d) PSNR versus parameter β.

Fig. 2. (a) MSE versus number of iterations. (b) PSNR difference between
the floating-point reference model and finite precision model versus number
of bits for the fractional part (m).

To verify the performance of our method with fixed
parameters and iteration numbers, we have carried out
real experiments on actual images, including Terra MODIS
level 1 B data, the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) image of the Washington DC Mall,
real infrared image, and HYDICE Urban band 1 data. The
experiment results are shown in Fig. 3, we can see that
different levels of stripes images are all well removed.

B. Finite Precision Effect

On the one hand, the variables in the software implemen-
tation are represented as double-precision float points, which
is not economic for hardware implementation given the high
consumption of the hardware resources. On the other hand, the
number of bits representing the variables has great influence on
the quality of destriped images. Therefore, a tradeoff between
the stripe removal performance and the hardware resource
expense should be achieved. For 8-bit images, the integer part

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ON-ORBIT REAL-TIME VARIATIONAL IMAGE DESTRIPING: FPGA ARCHITECTURE AND IMPLEMENTATION 5616512

Fig. 3. Experiments on real images. The top row are the actual striped images, the bottom row are the corresponding destriped images. (a) MODIS band 24.
(b) MODIS band 30. (c) MODIS band 21. (d) Washington DC band 1. (e) Real infrared image. (f) Urban band 1.

of the key intermediate variables during the processing such as
dx(i, j), dy(i, j), bx(i, j), by(i, j) and u(i, j) are set as 9 bits,
in which the top digit represents the sign of the variables.
The fractional parts of these variables are set as m bits. For
assessing the finite precision effects of our proposed method,
the MATLAB implementation is set as the reference. The
obtained PSNR difference between the floating point reference
model and finite precision model varying the precision of the
fractional part is detailed in Fig. 2(b). The curves indicate
that the difference of PSNR saturates after m reaches 8, and
such phenomenon holds true for all the three cases of stripe
level. Therefore, we set m = 8 to represent the fractional
parts of the variables dx(i, j), dy(i, j), bx(i, j), by(i, j) and
u(i, j) in a dedicated hardware architecture for 8-bit images,
to reduce hardware resources overhead while preserving good
stripe-removal performance.

IV. FPGA ARCHITECTURE AND IMPLEMENTATION

A. Fully Pipelined Iteration Unrolled Hardware Architecture

The overview of the proposed fully pipelined iteration
unrolled hardware architecture is depicted in Fig. 4. The main
feature is that it mainly consists of n unrolled ICBs, which are
spread out in cascade to form a coarse-grained row-level par-
allelism, and alleviate the data dependency between iterations.
Each ICB executes a single iteration task, and contains three
sub-blocks u updater, d updater, and b updater, corresponding
to the three computation steps of the split Bregman method.
The three sub-blocks are arranged in pipeline, leading to a fine-
grained pixel-level parallelism. In addition, the parameters λ1,
λ2, α, and β can be set manually according to the stripe inten-
sity. With the pipeline characteristic, the throughput for coping
with the image frame sequences is considerably improved,
and the PD is greatly reduced, because the upcoming images
need not to be buffered for long time to wait for the finish of
destriping the current image.

The image input component and stripped image output
component mainly consist of some simple controlling logic
and buffers, and they will not be detailed in this article. In the

following, we mainly introduce the technical details of the
ICB. For convenience, we will refer to the neighbors of the
current position as north, south, west, and east: x(i−1, j) = xn,
x(i + 1, j) = xs, x(i, j − 1) = xw, x(i, j + 1) = xe, where x
represents variables like u, dx, dy, bx, by and Is, besides, the
element in the current position can be indicated as x(i, j) = xc.

B. u Updater

The u updater is devoted to updating the variable u in equa-
tion (13). With the usage of Gauss-Seidel iteration method,
the variables involved in the computation are partly from the
current iteration, and the others are from the previous one.
The variables context for u update computation are shown in
Fig. 5(a). For the present ICB (assume the present ICB as the
kth one), only uk

n and uk
w can be used, which are calculated

and buffered in the current ICB, and variables such as uk−1
s

and uk−1
e are from the previous ICB. Likewise, the variables

dx, dy, bx, by and Is are also the update results from the
previous ICB. As shown in Fig. 5(b), two FIFOs and several
registers can be used to provide the neighboring variables.
FIFO1 and FIFO2 buffer the u values which are just updated
by the computation logic in the current and the previous ICB,
respectively. Similarly, three FIFOs with several registers are
also used to form the computational context with respect to dx,
dy, bx, by, and Is. In the following, we choose I to represent
the original image instead of Is to avoid confusion.

1) Bottleneck for u Updater Implementation: The critical
data dependency occurs because of the need for uk

w, which is
the result of processing the previous pixel. In other words,
uk

w will not be obtained until the processing of previous
pixel is finished. Squeezing all the update computations into
one clock cycle is an option, but it will result in a too
long data path and severely restrict the overall throughput.
Therefore, the complex computations have to be divided into
several phases to shorten the critical data path. Meanwhile,
stalling the input pixels for a few clock cycles to wait for
the uk

w is also a natural choice, but it will inevitably cause
extra delay for every pixel, and the whole PD of one image
frame will be rather large. In conclusion, an efficient way

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

5616512 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 4. Block diagram of the proposed fully pipelined iteration unrolled hardware architecture. A coarse-grained parallelism and a fine-grained parallelism
are both achieved in the proposed architecture, leading to high-throughput and low-delay performance.

Fig. 5. (a) Context for u update computation. Red dots represent the values
from previous iteration, green dots represent the values from current iteration.
(b) Block scheme of partial context construction.

of obtaining and using uk
w is the key of breaking through

the bottleneck and realizing a high-throughput pipelined
architecture.

2) Timing Arrangement: To alleviate the bottleneck, we pro-
pose a dedicated timing arrangement for the u updater: a
special data path for uk

w is designed, and the other variables
involved are arranged to be processed in advance, as depicted
in Fig. 6. The pipelined computation is arranged in five clock
cycles, the computations not related to uk

w start for four clock
cycles ahead and are divided into three parts: y-direction,
x-direction, and others. These three parts of calculations are
performed simultaneously in three clock cycles, and the sum
of the three intermediate results will not be obtained until the
fourth cycle. In the fifth clock cycle, the newly obtained uk

w
participates in the final computation phase in time, as indicated
by the red data path in Fig. 6. Therefore, the update of each
u will not be postponed and the sequential pixels will be
processed consecutively at each clock cycle.

Fig. 6. Block diagram of the destriped image u updater. The entire process
costs 5 pixel clock cycles. The red part in the fifth cycle represents the
dedicated data path for uk

w, which needs optimization for acceleration.

3) Optimization for Critical Path: With the proposed timing
arrangement, the processing speed of u updater is greatly
improved, but a long data path still exists, i.e., the division

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ON-ORBIT REAL-TIME VARIATIONAL IMAGE DESTRIPING: FPGA ARCHITECTURE AND IMPLEMENTATION 5616512

Fig. 7. PSNR values of different approximate schemes in terms of the critical path uk
w × (1/(1 + 2α + 2β). The approximate schemes are in the form

of ×(N/2K), the black bar indicates the original division, the yellow, cyan, red, green, and blue bars represent N = 7 & K = 11, N = 113 & K = 15,
N = 227 & K = 16, N = 453 & K = 17, N = 907 & K = 18, respectively. The blue bar shows the closet PSNR value to the black bar.

operation of 1 + 2α + 2β in the final phase, which is
considerably both time and area consuming. Thus, we propose
a approximated simplification scheme to speed up the critical
path. We replace the division with multipliers and bit shift
operations as ×(N/2K), and we have investigated the effects
of different selection of N and K, the comparative results with
respect to PSNR are depicted in Fig. 7. When more precise
results are required, the bigger value of both N and K should
be chosen, however, it will incur more computational delay and
hardware resource expense. Thus, we should choose appropri-
ate values of N and K for the balance between precision and
time and resource overhead. The bar graph in Fig. 7 shows
that, when compared with the original division, the approx-
imation 907/218 achieves the closest PSNR values among
all the methods. Thus, the division can be simplified as a
multiplier ×907 with a bit shift operator � 18. As for the data
path of uk

w, the original computation uk
w × (α/(1 + 2α + 2β))

can be directly transformed to (uk
w × 907) � 14 while

parameter α selects 16, as shown in Fig. 6. Furthermore, the
multiplier ×907 can be replaced with several shift registers
and adders as A × 907 = A � 10 + A � 9 + A �
8 + A � 4 + A � 2 + A, which will further speed up the
computation. As a result, the division is purely simplified to a
few shift registers and adders, and hardware resource overhead
are considerably reduced. The result and performance will be
discussed in Section V.

C. d and b Updater

Analogous to the u updater, Gauss–Seidel iteration makes
use of the variables uk

c , uk
w, uk

n from the u updater block in the
present ICB, and the variables from the previous ICB Ik−1

c ,
Ik−1

w , bk−1
xc , and bk−1

yc . Data dependencies do not exist between
pixels in the same iteration, so it is very easy to implement
the computations in four clock cycles in pipeline, as shown in
Fig. 8(a) and (b). Taking the dx updater for example, in the

first clock cycle, two subtractors and an adder are used to
compute ∇x(u − Is)+ bx, in the next clock cycle, the absolute
value is obtained, and in the third clock cycle, the result of
|∇x(u − Is) + bx| − (λ2/β) is computed through a subtractor.
Finally, in the fourth clock cycle, after comparing with 0 and
instructed by the sign of ∇x(u − Is) + bx, dk

x is obtained. The
pipelined computations of dx and dy updaters are performed
simultaneously.

As for bx, by updater, Ik−1
c , Ik−1

w , and bk−1
xc are from the

previous iteration, and dk
xc is from the dx updater in the

current ICB, uk
c and uk

w are from the u updater in the current
iteration. The computations of (18) are simply arranged in
two clock cycles and performed simultaneously, as depicted
in Fig. 8(c) and (d).

D. Data Flow of the Architecture

When each ICB receives the input variables, the u updater,
d updater and b updater start to function sequentially after
buffering the corresponding variables u, dx, dy, bx, and by.
As shown in Fig. 9(a), for each pixel, the total computations
only take 11 clock cycles, besides, each pixel can be processed
continuously without stalling, leading to a fine-grained paral-
lelism with high throughput and low PD.

Owing to the row buffers used in each ICB, there is
about one row cycle interval between two adjacent ICBs, for
example, only when the present ICB finishes processing one
row of data, the corresponding outputs can be just streamed
into the next ICB. This feature leads to a coarse-grained
parallelism. The processing flow between ICBs is illustrated
in Fig. 9(b), taking the architecture with 20 ICBs for example,
when the update computations for the first row of data have
been finished in the endmost ICB, the 21st row just reaches
in the first ICB to start the first update computations. For an
image frame, after the input of the first pixel, it only takes
about the transmitting time of 20 rows of pixels to generate

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

5616512 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 8. Block diagrams of (a) dx updater, (b) dy updater, (c) bx updater,
(d) by updater. dx and dy updater take 4 pixel clock cycles, bx and by updater
take 2 pixel clock cycles.

the first pixel of the final destriped image, which shows very
low PD.

V. RESULT AND DISCUSSION

A. FPGA Implementation Result

1) Throughput and Processing Delay: The proposed archi-
tecture is implemented on a single Xilinx xc6vlx240t FPGA in
Verilog-HDL and is synthesized, placed, and routed with ISE
14.7. The maximum clock frequency of each updater block
and the entire architecture is depicted in Table I. Since the
critical path of the entire architecture exists in the u updater
block, the overall maximum processing speed is exactly the
maximum processing speed of the u updater itself. Owing
to more consumption of the hardware resources, the imple-
mentation result with respect to maximum speed of the entire
architecture is slightly lower than that of only implementing
the u updater block, which is caused by the different place
and route consequences. The maximum throughput of the
architecture with 20 ICBs can reach up to 176.0 MPixels/s.
There is no extra buffering logic inside the three updater
blocks, thus the PD for them are 5, 4, and 2 clock cycles,

Fig. 9. Processing flow. (a) and (b) Processing flow of pixels within one
iteration and between different iterations, respectively. The red dots represent
the pixels being processed at present iterations.

respectively. The buffers are configured in each ICB, and each
data buffer only stores a row of the input data, bringing a
delay of about c clock cycles (Let r indicate image row and
c indicate image column). In total, the PD in one ICB for an
input pixel is the sum of computation delay and buffer delay,
i.e., 11 + c clock cycles. The PD is positively associated with
the number of deployed ICBs and the image column size, more
specifically, with n ICBs deployed, the corresponding total
delay is n × (11 + c) clock cycles, as shown in Table I. As a
result, when 20 ICBs are deployed, the proposed architecture
can destripe 10 742 × 8192 images at 2 frames/s with PD of
only 0.932 ms.

2) Advantage of Proposed Timing Arrangement and Approx-
imate Simplification Method: To verify the proposed timing
arrangement and approximate simplification method, an prim-
itive implementation for u updater without the proposed opti-
mization methods was used for comparison in terms of the
resource usage and maximum working frequency. The com-
parison results are shown in Table II, Primitive indicates the u
updater implemented without the proposed timing arrangement
and approximate simplification method for the division, and
all the update computations are performed in one clock cycle,
resulting in a low maximum frequency of 28.3 MHz. Scheme1
is the first hardware implementation version, which transforms
the original computation uk

w × (α/(1 + 2α + 2β)) to (uk
w ×

907) � 14. The computation involving multiplication and
division is simplified to multiplication with shifting, and the
maximum frequency is promoted to 138.1 MHz. Afterward,
we have further optimized the multiplication ×907 to the
form of A × 907 = A � 10 + A � 9 + A � 8 + A �
4 + A � 2 + A, which is the Scheme2 in Table II. The

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ON-ORBIT REAL-TIME VARIATIONAL IMAGE DESTRIPING: FPGA ARCHITECTURE AND IMPLEMENTATION 5616512

TABLE I

MAXIMUM FREQUENCY AND PD OF THE PROPOSED FPGA IMPLEMENTATION (Tp IS THE PIXEL CLOCK CYCLE, c IS THE COLUMN SIZE OF THE IMAGE,
AND n STANDS FOR THE NUMBER OF ITERATIONS DEPLOYED IN THE ARCHITECTURE)

TABLE II

MAXIMUM SPEED AND RESOURCE EXPENSE WITH

AND WITHOUT THE OPTIMIZATIONS

multiplication is simplified to several shift registers and adders,
and the maximum speed is further improved to 190 MHz.
Compared with Scheme1, the LUT usage has increased a few,
but the special resource DSP48E1 usage is reduced to 0. Such
feature can make our architecture transplantable in different
FPGA platforms from different vendors, and as an application-
specified integrated circuit (ASIC) eventually. In consequence,
the implemented u updater with the proposed optimization
methods has achieved a speedup of 571% and reduction of
76.71% in terms of LUT resource usage, helping accelerate
the overall throughput and save the resource consumptions.
Even if many ICBs are deployed, the resource expenses are
much less than purely unrolling multiple ICBs without the
proposed optimizations.

3) Resource Usage: As with the hardware resource usage,
the overhead of FPGA logic elements such as LUT, register,
and DSP48E1 are listed in Table III, and they are only related
with the number of deployed ICBs. Each ICB utilizes only
1.2% LUTs and 0.4% registers, the unrolling of multiple
iterations leads to the multiplication of the utilized logic
elements. In addition, image input component, stripped image
output component, and the buffering logic for variables u,
dx, dy, bx, by, and Is have introduced additional registers and
LUTs. With 20 ICBs deployed, the usage of LUTs is 24.3%
of the total amount in xc6vlx240t FPGA, meanwhile, 8.6% of
the registers and none of DSP48E1 are used.

As for the architecture with fixed ICBs, its memory usage
only varies with the size of the input images, especially the
column size. As listed in Table IV, when processing images
in size of 2048 × 2048 with 20 ICBs, the total memory usage
is 10.00 Mbits, which is less than the total volume of the
available ON-chip memory in xc6vlx240t FPGA (14.6 Mbits).
Nevertheless, it is noteworthy that, if the swath of the image
is too big, the ON-chip memory will be not enough, thus we
would choose OFF-chip memory for data buffering.

4) Power Consumption: Owing to the low resource uti-
lization, the ON-chip power consumption is low, as listed

TABLE III

RESOURCE USAGE OF THE PROPOSED ARCHITECTURE

IN FPGA (xc6vlx240t)

TABLE IV

FPGA (xc6vlx240t) MEMORY USAGE (Mbits) UNDER DIFFERENT

ICBS AND DIFFERENT IMAGE SIZE CASES

TABLE V

FPGA (xc6vlx240t) ON-CHIP POWER CONSUMPTION (W) UNDER
DIFFERENT ICBS AND DIFFERENT IMAGE SIZE CASES

in Table V. The ON-chip power consumption results are
generated by the XPower Analyzer of ISE 14.7. It can be
observed that, the ON-chip power consumption mainly varies
with the computational resource utilization, and it is slightly
influenced by the utilized ON-chip BRAMs. For the imple-
mentation coping with 2048 × 2048 images with 20 ICBs
deployed, its maximum ON-chip power consumption is only
4.857 W. Moreover, as is known to all, the usage of OFF-chip
memories, such as SDRAM/DDR, is one of the main causes of
the power consumption for the entire embedded system [44].
Due to the advantage of low utilization rate of memory of
the proposed architecture, OFF-chip memory is not necessary
for the embedded system, thus the main power consumption
of the system comes from the FPGA, promoting the overall
power efficiency of the system. In conclusion, along with low-
resource-overhead characteristic, the low-power-consumption
feature makes our proposed architecture suitable for power
and resource-limiting ON-orbit applications.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

5616512 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE VI

PD, TOTAL PROCESSING TIME (TT), MAXIMUM FRAME RATE (FR)
OF PROPOSED, AND BUFFER-LOOP ARCHITECTURES.

(176 MHz WORKING FREQUENCY)

B. Comparison Against Other Implementations

As mentioned above, the hardware implementations of
image destriping algorithms are rarely reported, let alone
variational model-based methods. Only work in [45] presents
an image destriping hardware architecture based on FPGA,
which adopts a filtering-based destriping algorithm, and its
destriping performance is not as good as variational-based
algorithms. Therefore, we choose other real-time implemen-
tations of iterative algorithms for comparisons. Usually, the
implementation of iterative algorithms is in the form of buffer-
loop, as the works in [46] and [47]. The core structure of the
buffer-loop architecture is implementing only one ICB and
using massive memory resources for buffering the intermediate
results. The fixed number of iterative computation tasks are
all performed only by one ICB at different times. In this
section, we mainly compare the performance of the proposed
architecture against that of the buffer-loop architecture.

1) Resource Usage: Apparently, the biggest advantage of
the buffer-loop architecture is its slight logic resource usage for
implementing only one ICB. No matter how many iterations
are required to perform on one image, its total logic resource
usage equals nearly only one ICB of our proposed architecture,
as can be seen in the fifth row of Table III. However, as for the
memory usage, the disadvantage of the buffer-loop architec-
ture is evident. Different from our proposed architecture, the
intermediate results such as u(i, j), dx(i, j), dy(i, j), bx(i, j),
by(i, j) and the original image Is are all in the same size of the
input images and need to be buffered, so the memory overhead
have increased a lot, as listed in the bottom row of Table IV.
When dealing with images in size of 2048×2048, the overall
memory usages reach up to 512 Mbits, which is a huge burden
even if OFF-chip memory is used.

2) Real-Time Performance: The processing flow of the
buffer-loop architecture is that each input image needs to be

TABLE VII

RUNTIME OF HARDWARE AND SOFTWARE IMPLEMENTATION

iteratively computed for a fixed number by only one ICB, and
the subsequent image should wait until the current image is
completely processed, thus the follow-up image sequences are
required to be stalled for a moment, decreasing the overall
processing frame rate. To comprehensively compare the real-
time performance of the proposed and the buffer-loop archi-
tecture, we select three indexes such as PD, total processing
time, and maximum frame rate for quantitative comparisons.
PD is the time interval from the input of the first pixel in the
original image to the output of the first pixel in the destriped
image. Total processing time is the time interval from the input
of the first pixel in the original image to the output of the last
pixel in the destriped image. For convenience of comparison,
we assume the proposed and the buffer-loop architectures both
work in the frequency of 176 MHz. As shown in Table VI,
we can see clearly that no matter how many iterations are
required and how large the size of the image is, the PD
of the buffer-loop architecture is three orders longer than
that of the proposed architecture. The total processing time
of the buffer-loop architecture is 1 order longer than that
of the proposed architecture. As with the maximum frame
rate, the proposed architecture still outperforms the buffer-
loop architecture. It is worth noting that, the maximum frame
rate of the proposed architecture does not vary with the
number of deployed ICBs, and it has negative correlation
with the image size. However, the maximum frame rate of
the buffer-loop architecture is influenced both by iteration
number and image size. Combining the comparisons with
respect to the three indexes above, the proposed architecture
shows much better real-time performance than that of the
buffer-loop architecture. In essence, compared with the buffer-
loop architecture, our proposed architecture mainly promotes
the real-time performance and saves memory resources at the
expense of consuming more computational resources.

3) Comparison Against Software Implementation: We also
compare the hardware and software runtime performance in
different image sizes, as listed in Table VII. The software
implementation is performed on the C++ simulation model
with a 3.20 GHz Intel Core i7-8700 CPU with 16 GB of
RAM. Obviously, comparing with software implementation,
the achieved speedup for the proposed hardware implementa-
tion is at least 1500×, which is rather considerable.

VI. CONCLUSION

In this article, a fully pipelined iterations unrolled hard-
ware architecture for real-time image destriping with a uni-
directional variational model is proposed. Firstly, the split
Bregman and Gauss–Seidel methods are introduced to speed
up solution and thus reduce the number of iterations. Then
the involved iteration loop is unrolled and a coarse-grained

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ON-ORBIT REAL-TIME VARIATIONAL IMAGE DESTRIPING: FPGA ARCHITECTURE AND IMPLEMENTATION 5616512

pipelined architecture is proposed, in which a series of ICBs
are deployed in cascade, alleviating the bottleneck caused by
the data dependency between adjacent iterations. Secondly, for
each ICB, a fine-grained pipelined architecture and dedicated
timing arrangement are designed to break through the bot-
tleneck caused by the data dependency within each iteration.
Besides, an approximate simplification scheme is proposed to
accelerate the critical path with less resource usage.

The proposed architecture is implemented on a XILINX
6vcx240t FPGA and achieves a maximum throughput up
to 176 MPixels/s with delay of only tens of row cycles for 8-bit
images. It is the first high-performance hardware implemen-
tation of variational image destriping for large-swath remote-
sensing images with high data rate. The proposed architecture
can be fully implemented by some basic logic resources
and easily exported to other FPGA or ASIC technologies.
In the future, the proposed architecture can be developed to
intellectual property (IP), and it can be embedded with the
space-borne ship detection [48] or cloud detection [49] units
to build an integrated system.

REFERENCES

[1] K.-S. Chen, M. M. Crawford, P. Gamba, and J. S. Smith, “Introduction
for the special issue on remote sensing for major disaster prevention,
monitoring, and assessment,” IEEE Trans. Geosci. Remote Sens., vol. 45,
no. 6, pp. 1515–1518, May 2007.

[2] K. E. Joyce, S. E. Belliss, S. V. Samsonov, S. J. McNeill, and
P. J. Glassey, “A review of the status of satellite remote sensing and
image processing techniques for mapping natural hazards and disasters,”
Progr. Phys. Geogr., vol. 33, no. 2, pp. 183–207, Jun. 2009.

[3] L. Zhang and B. Luo, “Recent developments in remote-sensing technolo-
gies for disaster management in China,” URSI Radio Sci. Bull., vol. 87,
no. 1, pp. 19–24, Mar. 2014.

[4] B. Zhong, W. Chen, S. Wu, L. Hu, X. Luo, and Q. Liu, “A cloud
detection method based on relationship between objects of cloud and
cloud-shadow for Chinese moderate to high resolution satellite imagery,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 11,
pp. 4898–4908, Nov. 2017.

[5] Y. Ji-Yang, H. Dan, W. Lu-Yuan, G. Jian, and W. Yan-Hua, “A real-time
on-board ship targets detection method for optical remote sensing satel-
lite,” in Proc. IEEE 13th Int. Conf. Signal Process. (ICSP), Nov. 2016,
pp. 204–208.

[6] H. He, Y. Lin, F. Chen, H.-M. Tai, and Z. Yin, “Inshore ship detection in
remote sensing images via weighted pose voting,” IEEE Trans. Geosci.
Remote Sens., vol. 55, no. 6, pp. 3091–3107, Jun. 2017.

[7] A. Di Simone, H. Park, D. Riccio, and A. Camps, “Sea target detection
using spaceborne GNSS-R delay-Doppler maps: Theory and experimen-
tal proof of concept using TDS-1 data,” IEEE J. Sel. Topics Appl. Earth
Observ., vol. 10, no. 9, pp. 4237–4255, Sep. 2017.

[8] C. Zhang, B. Li, H. Jiang, H. Li, and J. Chen, “High throughput
hardware architecture of a MIMO-based sea land segmentation for on-
orbit remote sensing image processing,” in Proc. Int. Conf. Vis., Image
Signal Process. (ICVISP), Sep. 2017, pp. 142–146.

[9] J.-J. Pan and C.-I. Chang, “Destriping of landsat MSS images by
filtering techniques,” Photogramm. Eng. Remote Sens., vol. 58, p. 1417,
Jan. 1992.

[10] J. Torres and S. O. Infante, “Wavelet analysis for the elimination of strip-
ing noise in satellite images,” Opt. Eng., vol. 40, no. 7, pp. 1309–1315,
Jul. 2001.

[11] P. Rakwatin, W. Takeuchi, and Y. Yasuoka, “Stripe noise reduction
in MODIS data by combining histogram matching with facet filter,”
IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1844–1856,
Jun. 2007.

[12] B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring
artifact removal with combined wavelet-Fourier filtering,” Optics Exp.,
vol. 17, no. 10, pp. 8567–8591, May 2009.

[13] H.-S. Jung, J.-S. Won, M.-H. Kang, and Y.-W. Lee, “Detection and
restoration of defective lines in the SPOT 4 SWIR band,” IEEE Trans.
Image Process., vol. 19, no. 8, pp. 2143–2156, Aug. 2010.

[14] J. Chen, Y. Shao, H. Guo, W. Wang, and B. Zhu, “Destriping CMODIS
data by power filtering,” IEEE Trans. Geosci. Remote Sens., vol. 41,
no. 9, pp. 2119–2124, Sep. 2003.

[15] R. Pande-Chhetri and A. Abd-Elrahman, “De-striping hyperspectral
imagery using wavelet transform and adaptive frequency domain filter-
ing,” ISPRS J. Photogramm. Remote Sens., vol. 66, no. 5, pp. 620–636,
Sep. 2011.

[16] F. Tsai and W. W. Chen, “Striping noise detection and correction of
remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 46,
no. 12, pp. 4122–4131, Dec. 2008.

[17] F. L. Gadallah, F. Csillag, and E. J. M. Smith, “Destriping multisensor
imagery with moment matching,” Int. J. Remote Sens., vol. 21, no. 12,
pp. 2505–2511, Nov. 2000.

[18] B. K. P. Horn and R. J. Woodham, “Destriping LANDSAT MSS images
by histogram modification,” Comput. Graph. Image Process., vol. 10,
no. 1, pp. 69–83, May 1979.

[19] M. Wegener, “Destriping multiple sensor imagery by improved his-
togram matching,” Int. J. Remote Sens., vol. 11, no. 5, pp. 859–875,
May 1990.

[20] G. Corsini, M. Diani, and T. Walzel, “Striping removal in MOS-B
data,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1439–1446,
May 2000.

[21] H. Shen and L. Zhang, “A MAP-based algorithm for
destriping and inpainting of remotely sensed images,” IEEE
Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 1492–1502,
May 2009.

[22] H. Carfantan and J. Idier, “Statistical linear destriping of satellite-based
pushbroom-type images,” IEEE Trans. Geosci. Remote Sens., vol. 48,
no. 4, pp. 1860–1871, Apr. 2010.

[23] M. Bouali and S. Ladjal, “Toward optimal destriping of MODIS data
using a unidirectional variational model,” IEEE Trans. Geosci. Remote
Sens., vol. 49, no. 8, pp. 2924–2935, Aug. 2011.

[24] J. Zhao et al., “Single image stripe nonuniformity correction
with gradient-constrained optimization model for infrared
focal plane arrays,” Opt. Commun., vol. 296, pp. 47–52,
Feb. 2013.

[25] Y. Chang, H. Fang, L. Yan, and H. Liu, “Robust destriping method with
unidirectional total variation and framelet regularization,” Opt. Exp.,
vol. 21, no. 20, pp. 23307–23323, Oct. 2013.

[26] Y. Chang, L. Yan, H. Fang, and H. Liu, “Simultaneous destriping and
denoising for remote sensing images with unidirectional total variation
and sparse representation,” IEEE Geosci. Remote Sens. Lett., vol. 11,
no. 6, pp. 1051–1055, Jun. 2014.

[27] N. Acito, M. Diani, and G. Corsini, “Subspace-based striping noise
reduction in hyperspectral images,” IEEE Trans. Geosci. Remote Sens.,
vol. 49, no. 4, pp. 1325–1342, Apr. 2011.

[28] J. Fehrenbach, P. Weiss, and C. Lorenzo, “Variational algorithms
to remove stationary noise: Applications to microscopy imaging,”
IEEE Trans. Image Process., vol. 21, no. 10, pp. 4420–4430,
Oct. 2012.

[29] X. Lu, Y. Wang, and Y. Yuan, “Graph-regularized low-rank representa-
tion for destriping of hyperspectral images,” IEEE Trans. Geosci. Remote
Sens., vol. 51, no. 7, pp. 4009–4018, Jul. 2013.

[30] H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, “Hyper-
spectral image restoration using low-rank matrix recovery,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4729–4743,
Aug. 2014.

[31] Y. Chang, L. Yan, H. Fang, and C. Luo, “Anisotropic spectral-spatial
total variation model for multispectral remote sensing image destrip-
ing,” IEEE Trans. Image Process., vol. 24, no. 6, pp. 1852–1866,
Jun. 2015.

[32] X. Kuang, X. Sui, Q. Chen, and G. Gu, “Single infrared image stripe
noise removal using deep convolutional networks,” IEEE Photon. J.,
vol. 9, no. 4, pp. 1–13, Aug. 2017.

[33] Z. He, Y. Cao, Y. Dong, J. Yang, Y. Cao, and C.-L. Tisse, “Single-
image-based nonuniformity correction of uncooled long-wave infrared
detectors: A deep-learning approach,” Appl. Opt., vol. 57, no. 18,
pp. D155–D164, 2018.

[34] P. Xiao, Y. Guo, and P. Zhuang, “Removing stripe noise from infrared
cloud images via deep convolutional networks,” IEEE Photon. J., vol. 10,
no. 4, pp. 1–14, Aug. 2018.

[35] Y. Chang, L. Yan, L. Liu, H. Fang, and S. Zhong, “Infrared aerother-
mal nonuniform correction via deep multiscale residual network,”
IEEE Geosci. Remote Sens. Lett., vol. 16, no. 7, pp. 1120–1124,
Jul. 2019.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

5616512 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

[36] Y. Chang, M. Chen, L. Yan, X.-L. Zhao, Y. Li, and S. Zhong, “Toward
universal stripe removal via wavelet-based deep convolutional neural net-
work,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 4, pp. 2880–2897,
Apr. 2020.

[37] V. Rana, I. Beretta, D. Atienza, A. A. Nacci, M. D. Santambrogio,
and D. Sciuto, “Design methods for parallel hardware implementation
of multimedia iterative algorithms,” IEEE Des. Test. IEEE Des. Test.
Comput., vol. 30, no. 4, pp. 71–80, Aug. 2013.

[38] V. Rana, I. Beretta, F. Bruschi, A. A. Nacci, D. Atienza, and D. Sciuto,
“Efficient hardware design of iterative stencil loops,” IEEE Trans.
Comput-Aided Des. Integr. Circuits Syst., vol. 35, no. 12, pp. 2018–2031,
Dec. 2016.

[39] T. Goldstein and S. Osher, “The split Bregman method for
L1-regularized problems,” SIAM J. Imag. Sci., vol. 2, no. 2, pp. 323–343,
Apr. 2009.

[40] D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf.
Theory, vol. 41, no. 3, pp. 613–627, Mar. 1995.

[41] J. N. Tritsiklis, “A comparison of Jacobi and Gauss-seidel parallel
iterations,” Appl. Math. Lett., vol. 2, no. 2, pp. 167–170, Nov. 1988.

[42] F. Auger, B. Feuvrie, F. Li, and Z. Luo, “Multiplier-free divide, square
root, and log algorithms,” IEEE Signal Process. Mag., vol. 28, no. 4,
pp. 122–126, Jul. 2011.

[43] Y. Mathlouthi, A. Mitiche, and I. B. Ayed, “Regularised differentiation
for image derivatives,” IET Image Process., vol. 11, no. 5, pp. 310–316,
May 2017.

[44] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Nov. 2017.

[45] J. Chen and H. Jiang, “The efficient-parallel stripe noise removal
algorithm with low resource utilization based on FPGA,” in Proc. IEEE
2nd Int. Conf. Signal Image Process. (ICSIP), Aug. 2017, pp. 137–143.

[46] M. Martina and G. Masera, “Mumford and Shah functional: VLSI
analysis and implementation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 3, pp. 487–494, Mar. 2006.

[47] J. Zeng, J. Lin, and Z. Wang, “An improved gauss-Seidel algo-
rithm and its efficient architecture for massive MIMO systems,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 9, pp. 1194–1198,
Sep. 2018.

[48] K. Willburger, K. Schwenk, and J. Brauchle, “AMARO-an on-board ship
detection and real-time information system,” Sensors, vol. 20, no. 5,
pp. 1324–1346, Feb. 2020.

[49] N. Shan, T.-Y. Zheng, and Z.-S. Wang, “Onboard real-time cloud
detection using reconfigurable FPGAs for remote sensing,” in Proc. 17th
Int. Conf. Geoinformatics, Aug. 2009, pp. 1–5.

Liqun Chen received the B.S. degree from the
School of Materials Science and Engineering,
Huazhong University of Science and Technology
(HUST), Wuhan, China, and the Ph.D. degree from
the School of Artificial Intelligence and Automation,
HUST, in 2012 and 2019, respectively.

He is currently a Post-Doctorate with the School
of Artificial Intelligence and Automation, HUST.
His research interests include computer vision and
image processing, in particular, embedded image
processing system.

Yi Chang (Member, IEEE) received the B.S. degree
in automation from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2011, the M.S. degree in pattern recognition and
intelligent systems from the Huazhong University of
Science and Technology, Wuhan, China, in 2014,
and the Ph.D. degree from the School of Artificial
Intelligence and Automation, Huazhong University
of Science and Technology in 2019.

From 2014 to 2015, he was a Research Assistant
with Peking University, Beijing, China. He was a

Research Intern with the Machine Learning Group, Tencent Youtu Labora-
tory, Shenzhen, China. He is currently a Post-Doctorate with the Artificial
Intelligence Research Center, Peng Cheng Laboratory, Shenzhen. His research
interests include multispectral image processing and structural noise removal.

Luxin Yan (Member, IEEE) received the B.S.
degree in electronic communication engineering
and the Ph.D. degree in pattern recognition and
intelligence system from the Huazhong University
of Science and Technology (HUST), Wuhan, China,
in 2001 and 2007, respectively.

He is currently a Professor with the School of
Artificial Intelligence and Automation, HUST.
His research interests include multispectral image
processing, pattern recognition, and real-time
embedded system.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on April 04,2022 at 12:27:26 UTC from IEEE Xplore. Restrictions apply.

