
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1

Infrared Small UAV Target Detection Based on
Residual Image Prediction via Global and

Local Dilated Residual Networks
Houzhang Fang , Member, IEEE, Mingjiang Xia, Gang Zhou, Yi Chang , Member, IEEE,

and Luxin Yan , Member, IEEE

Abstract— Thermal infrared imaging possesses the ability to
monitor unmanned aerial vehicles (UAVs) in both day and night
conditions. However, long-range detection of the infrared UAVs
often suffers from small/dim targets, heavy clutter, and noise in
the complex background. The conventional local prior-based and
the nonlocal prior-based methods commonly have a high false
alarm rate and low detection accuracy. In this letter, we propose
a model that converts small UAV detection into a problem
of predicting the residual image (i.e., background, clutter, and
noise). Such novel reformulation allows us to directly learn a
mapping from the input infrared image to the residual image.
The constructed image-to-image network integrates the global
and the local dilated residual convolution blocks into the U-Net,
which can capture local and contextual structure information
well and fuse the features at different scales both for image
reconstruction. Additionally, subpixel convolution is utilized to
upscale the image and avoid image distortion during upsampling.
Finally, the small UAV target image is obtained by subtracting the
residual image from the input infrared image. The comparative
experiments demonstrate that the proposed method outperforms
state-of-the-art ones in detecting real-world infrared images with
heavy clutter and dim targets.

Index Terms— Convolutional neural network (CNN), infrared
small unmanned aerial vehicle (UAV) target, residual learning,
target detection.

I. INTRODUCTION

INFRARED unmanned aerial vehicles (UAVs) target detec-
tion has been attracting considerable attention due to their

significant applications in the fields of civil and military
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security at low altitude. The performance of the UAV target
detection relies heavily on the accuracy of small target detec-
tion at long distances. Current infrared small UAV detection
has two major challenges. First, due to the long imaging
distance from infrared sensors, the UAV target occupies only
a small proportion of the whole observed image, and has no
obvious texture and shape features. Second, the infrared UAV
image often suffers from strong background clutter and noise,
such as heavy clouds and buildings, thus a low signal-to-clutter
ratio and a low signal-to-noise ratio. The above challenges
make infrared small UAV detection a difficult task.

In this letter, we focus on the single-frame detection
methods, which can be generally divided into three cate-
gories: local prior-based methods, nonlocal prior-based meth-
ods, and learning-based methods. In the local prior-based
methods [1]–[3], the filtering methods [1] such as max-mean
and max-median, are previously used to enhance the small
target. However, some strong edges such as the edges of
the cloud-sky background are also strengthened. Recently,
the human visual system (HVS)-based methods [2], [3] utilize
the local contrast to enhance the small target and suppress the
background clutter. However, being highly sensitive to com-
plex background clutter and noise, these methods can achieve
good detection performance only for simple background, and
are prone to fail for complex ones. The nonlocal prior-based
methods show a competitive detection performance in recent
years [4]–[8]. The small target detection is converted into an
optimization problem of recovering a low-rank component and
sparse component by employing the nonlocal self-similarity of
the background and the sparsity of the small target. However,
the performance of these methods will inevitably deteriorate
when the background is filled with more complicated clutter
and noise, which will destroy the nonlocal self-similarity of
the background.

Recently, learning-based methods are also adopted to detect
the infrared small target [9], [10]. Since the infrared small
target has no evident texture and shape features, it is very
difficult to perform feature learning directly for small tar-
gets with heavy background clutter using the convolutional
neural network (CNN)-based object detection techniques, such
as Faster R-CNN [9], thus a poor detection performance.
Shi and Wang [10] regarded the small target as noise and
proposed a denoising autoencoder network that uses the pre-
trained Visual Geometry Group (VGG)-19 model as a basic
network. Due to the loss of too many details during the pooling
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Fig. 1. Architecture of the proposed network. Each rectangle denotes a feature map extracted by the convolution kernels. The number below the rectangle
represents the size of each feature map in a corresponding row. The operations are indicated by arrows; a description of each operation is explained in the
bottom and the right bottom.

operation in the downsampling of the encoding process, it is
hard to reconstruct the high-frequency details well in the
decoding stage.

Our work is inspired by the residual image learning that
is exploited for image restoration [11]. The DnCNN network
in [11] is initially employed to predict image corruptions (e.g.,
noise) rather than clean images, which is generally an easier
task. In this letter, we model the infrared small target detection
as predicting the residual image by CNN. The background,
clutter, and noise are regarded as the residual image between
the input infrared image and the small UAV target image.
Once the residual image is estimated, the small target image
is obtained by subtracting the residual image from the input
image. It is difficult to achieve satisfactory performance when
directly using the DnCNN network [11] to predict the residual
image due to its complex structures. To address the above
issue, we propose a model that incorporates the global and
the local dilated residual convolution blocks into the U-Net
network. The global and the local dilated residual convolution
blocks, as well as skip connections between the encoding
and decoding stages, prevent the gradient from vanishing or
exploding during the back-propagation, making the network
training more stable. In particular, the global residual con-
nection (GRC) can enhance the flow of shallow information
to the deep layer to reduce the loss of feature map informa-
tion. In addition, the introduction of the local residual block
with the dilated convolution can enlarge the receptive field
and capture more context information to reconstruct multiple
structural components of the residual image without the need
to increase the network depth. Furthermore, the efficient
subpixel convolution (ESPC) [12] is employed to upscale the
image and avoid image distortion during the decoding stage.
In summary, the main contributions of this letter are listed as
follows.

1) We propose a novel multiscale U-Net architecture that
predicts the residual image between the input image and the
target image for infrared small UAV target detection.

2) We propose a global residual block composed of two
consecutive local residual blocks, which can not only capture
the local and contextual features for image reconstruction, but
also better fuse the features from the previous layer and the
current layer at different scales via the GRC.

3) Our method significantly outperforms the state-of-the-art
methods in terms of the qualitative and quantitative assess-
ments of real infrared UAV images with heavy clutter, complex
building, and dim targets.

II. PROPOSED METHOD

In this section, we present the proposed residual learning
CNN model [dilated residual U-net (DRUNet)] for the small
target detection in detail. Training a CNN model for our small
target detection mainly involves two steps: 1) design of the
network architecture and 2) model training from the training
dataset. Shown in Fig. 1 is the basic network architecture.

A. Infrared Small Target Detection Based on the Residual
Image Prediction

Generally, the infrared image model can be formulated as
follows: D = T + B + N , where D, T , B , and N represent
the original infrared image, the target image, the background
image, and the random noise image, respectively. The goal of
our residual learning network is to learn the nonlinear residual
mapping R(D) from D to D−T , so the small target image can
be achieved via T = D −R(D). Formally, the mean squared
error between the residual image and the estimated ones from
the original infrared image: �(�) = 1/2K

∑K
k=1 |(D − T ) −

R(D) |2F is employed as the loss function to learn the network
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parameters �, where {(Dk, Bk + Nk)}K
k=1 denotes K infrared

and residual image pairs.
The constructed network needs to predict the residual image

that contains the structured regions (such as clutter, noise, and
edges) and homogeneous (i.e., flat) regions, a very challenging
task. In this study, we propose a model that adopts the
U-Net-based multiscale network as the basic network, which
is widely exploited as an image-to-image nonlinear mapping.
The residual convolution block with normal convolution can
capture the fine structures in the shallow layer and the
large-scale edges in the deep layer; meanwhile, it can also
maintain the relevance of local information. The dilated resid-
ual convolution block integrated into the U-Net can capture
the contextual structure features in the corresponding layer.
The constructed multiscale network can effectively repre-
sent the structural information at different scales, which is
conducive to the reconstruction of the residual images with
multiple complex components.

B. Network Architecture

The proposed architecture consists of a downsampling
stage (left) and an upsampling (right) stage (Fig. 1), connected
to each other via skip connections. The downsampling and
upsampling stages can be regarded as the feature extraction
and image reconstruction modules, respectively. The proposed
framework has 36 convolutional layers in total. The U-Net
contains four scale feature maps and each scale extracts
the feature maps using a global residual block. Each global
residual block has a normal local convolution residual block
followed by a dilated convolution block composed of consec-
utive 3×3 dilated convolutions with a dilation rate of 2. Each
normal or dilated convolution is followed by a rectified linear
unit (ReLU) activation. In the downsampling stage, the input
image of size H × W is delivered to two residual blocks.
During the downsampling stage at each scale, the feature map
is downsampled using a 2 × 2 convolution with stride 2 and
is then fed to the next scale. The network in the 1/8-scale is
adopted to transfer the features from the downsampling stage
to the upsampling stage. The upsampling stage differs from the
downsampling stage in that it has an ESPC that upsamples
the feature map. The feature fusion in the minimum scale
(1/8-scale) is performed by adding the input and output
features of the current scale element-wise. The upsampled
feature maps first forward through two residual blocks, and
then the output feature maps in the right half are fused with
the ones from the left half of the downsampling stage in
the same scale. The skip connections and the feature fusion
structure help preserve the structured regions of the input
infrared image and recover the spatial information lost during
the downsampling.

C. Training and Testing of Network

In this section, we briefly describe the generation of the
training data pairs, which consist of the input image with
the UAV target and the reference image (i.e., residual image)
without the UAV target. We collect twenty infrared sequences
without/with small UAV targets under different complex back-
grounds using two infrared imaging devices. For real infrared

sequences without the UAV targets, we construct the training
pairs by embedding the simulated small targets with differ-
ent scales into ten real infrared background sequences. The
number of small targets is 200 and each small target whose
total spatial extent is less than 80 pixels. For real infrared
sequences with the UAV targets, the key is how to generate
the corresponding image that does not contain small UAV
targets as a reference. Because the small UAV target occupies
a few pixels and the local background pixels around the
target are very similar, we use the adjacent background region
pixels around the target to replace the target pixels. In our
experiments, we find that the training dataset obtained by
this method can achieve a high detection accuracy and a low
false alarm rate, especially for infrared images with heavy
background clutter and noise. The total number of the training
pairs generated by the above two methods is 26 000. Six real
infrared UAV sequences that have no intersection with the
training set are used as the test set. The representative images
of six test sequences and the details on how the training data
is constructed can be found in supplementary materials.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Setup

In order to show the effectiveness of the proposed method,
we compare our method with several state-of-the-art base-
line methods: infrared patch image (IPI) [4], reweighted
infrared patch tensor (RIPT) [5], partial sum of tensor nuclear
norm (PSTNN) [7], and DnCNN [11]. We call the proposed
DRUNet. For an objective evaluation, the detection proba-
bility Pd and false alarm rate Fa are adopted and defined
as follows:

Pd = # true targets detected

# total true targets
(1)

Fa = # false pixels detected

# total pixels in images
. (2)

Other metrics, including the signal-to-clutter ratio gain
(SCRG) [13], background suppression factor (BSF) [13], con-
trast gain (CG) [13], and intersection over union (IoU), are
given in the supplementary material.

In this letter, the proposed method and DnCNN are tested
using Python on a personal computer with a 2.10 GHz Intel
Xeon E5-2620 V4 CPU and 128 GB memory. We use the
Adam algorithm with mini-batch size 8 for optimization. The
model is trained from scratch and the whole training process
ends in 300 epochs. The initial learning rate is set to 10−5

and the learning rate will be multiplied by 0.1 at the 240th
epoch. Other methods are tested using MATLAB on the same
computer.

B. Comparisons With the Baseline Methods

We compare our method with the baseline methods in terms
of background suppression and target detection. Table I lists
the average SCRG, BSF, CG, and IoU values of five methods
for six real infrared UAV sequences. Obviously, the proposed
method consistently achieves the highest values for the four
metrics. For each measure of SCRG, BSF, CG, and IoU,
a higher score indicates better performance. Here, inf (i.e.,
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Fig. 2. Detected results of the five methods for Sequence 3 and the close-ups of the small UAV target for the detected result. (a) 66th frame of Sequence 3.
(b)–(f) Detected results and the corresponding 3-D maps by the IPI, RIPT, PSTNN, DnCNN, and our method, respectively.

Fig. 3. Detected results of the five methods for Sequence 5 and the close-ups of the small UAV target for the detected result. (a) 147th frame of Sequence 5.
(b)–(f) Detected results and the corresponding 3-D maps by the IPI, RIPT, PSTNN, DnCNN, and our method, respectively.

TABLE I

AVERAGE SCRG, BSF, CG, AND IOU VALUES OF

FIVE METHODS FOR SIX TEST SEQUENCES

infinity) means that the local background around the UAV is
very clean. High SCRG, BSF, and CG values imply that the
background clutter and noise in the small UAV images are
better suppressed. High IoU indicates that the predicted box
has higher localization accuracy.

Here, we present the detection results of the five methods for
the 66th and the 147th frames of Sequences 3 and 5 as shown
in Figs. 2 and 3, respectively. The close-ups of the small UAV
target in each detection result are also given. It can be seen

from Fig. 2 that, except for our method, the other four methods
suffer from heavy clutter and noise residual. We can see from
Fig. 3 that Sequence 5 has complex building background with
strong edge structures. The IPI, RIPT, and PSTNN methods
have much background residual, especially on the edges of the
building, which indicates that these methods are not able to
suppress the complex background well. The DnCNN method
can suppress the complex background well but still has a
little building residual. The complex background can almost be
removed from the infrared image by our method, and finally,
the detection of the small UAV targets will be very easy.
That means the proposed method can learn the residual image
more effectively. More experimental results are presented in
the supplementary material.

Fig. 4 presents the receiver operation characteristic (ROC)
curves of the five methods for six real UAV sequences on
logarithmic scale. We can tell that the proposed method con-
sistently obtains the highest detection probability in all cases
regardless of the false alarm rates, indicating that our method
has a better detection performance than the baseline methods.
In particular, for all sequences, when the segmentation thresh-
old reaches a certain level, the proposed method has no false
alarm earlier, which again validates the effectiveness of the
proposed method. The values of Pd and Fa for five methods
on each test sequence can be found in the supplementary
material.

C. Ablation Study

We perform an ablation study on six real sequences
and report the impact of integrating the efficient subpixel

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 23,2021 at 03:02:10 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FANG et al.: INFRARED SMALL UAV TARGET DETECTION 5

Fig. 4. ROC curves of the detection results for six real sequences in logarith-
mic scale. (a) Sequence 1. (b) Sequence 2. (c) Sequence 3. (d) Sequence 4.
(e) Sequence 5. (f) Sequence 6.

TABLE II

IMPACT OF INTEGRATING THE ESPC, DILATED CONVOLUTION (DC), AND

GRC IN THE U-NET ON OUR DATASET IN TERMS OF THE AVERAGE CG

convolution, dilated convolution, and GRC in the U-Net as
shown in Table II. We can observe that integrating the ESPC
can improve the performance of background suppression with
the average CG value for each sequence. Furthermore, incor-
porating the dilated convolution once again increases the

performance. Additionally, by introducing the GRC, which
fuses the features from the previous layer and the output of
two consecutive local residual blocks in the current layer,
the overall performance is significantly improved.

IV. CONCLUSION

This letter reformulates infrared small UAV target detection
into learning a nonlinear mapping from the space of infrared
images to the residual image. The proposed method can learn
the residual image very well with the constructed network,
which proves very effective over small UAV target detection.
Extensive real infrared data experiments show that the pro-
posed method has a better detection performance under com-
plex background clutter and noise than the baseline methods.
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