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Infrared Aerothermal Nonuniform Correction
via Deep Multiscale Residual Network

Yi Chang , Student Member, IEEE, Luxin Yan , Member, IEEE, Li Liu, Houzhang Fang, and Sheng Zhong

Abstract— In the infrared focal plane arrays imaging sys-
tems, the temperature-dependent nonuniformity effects severely
degrade the image quality. In this letter, we propose a very deep
convolutional neural network for unified infrared aerothermal
nonuniform correction. Our network is built with the multiscale
and residual training. The multiscale subnetworks utilize the
multiscale property in the images, and the long–short-term
residual learning contributes to the information propagation.
Compared with the previous methods, the proposed method is
more robust to various nonuniform artifacts and more efficient
at processing time. Experimental results validate the superiority
of our method for infrared nonuniform correction.

Index Terms— Convolutional neural network (CNN), infrared
image, nonuniform correction.

I. INTRODUCTION

FOR the infrared imaging systems equipped on the high-
speed aircraft, due to the temperatures fluctuations,

the resulting images mainly contain two kinds of fixed pattern
noise (FPN): a smooth nonuniform bias field that looks like
bright and large spot and line pattern nonuniform stripe
noise, as shown in Fig. 1(a). This aerothermal nonuniform
effect severely influences the image quality for subsequent
application. Therefore, it is necessary for us to remove these
artifacts before the succeeding image interpretation processes
are performed. In this letter, we mathematically formulate the
degradation as follows:

Y = X + B + E + N (1)

where Y ∈ R
R×C is the observed image, R and C stand for

the number of the rows and columns, respectively, X is the
clear image [Fig. 1(e)], B is the bias field [Fig. 1(c)], E is the
stripe noise [Fig. 1(b)] (B and E are the nonuniform FPNs),
and N is the random noise [Fig. 1(d)]. The goal of our work
is to obtain the clear image X from the degraded image Y .
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Fig. 1. Illustration of the main degradation factors in the IFPA detectors.
(a) Degradation image Y . (b) Stripe noise E. (c) Bias field B. (d) Random
noise N. (e) Ground truth image X. (f) Estimated image by the proposed
method. (g) Whole error (B + E + N). (h) Estimated error by the proposed
method.

The bias field is highly related to optical window tem-
perature. The bias caused by thermal radiation looks like
a bright and smooth spot, which is very similar to 2-D
Gaussian distribution. For the bias field removal, we mainly
introduce the optimization-based restoration methods [1]–[5].
Based on the correction model [6], Cao and Tisse [2] locally
fitted the derivatives of correction model to the gradient
components with a subsequent bilateral filter for refinement.
Zheng and Gee [1] first proposed an image decomposition-
based dual L1 sparsity representation constraints for both the
image and bias field component, respectively. Most of the
optimization-based methods followed this framework. Later,
Liu and Zhang [5] introduced the sparser L p gradient regu-
larization for the images with better performance.

The stripe noise is mainly caused by the nonuniform
response of adjacent detectors. The stripe noise has signifi-
cantly directional characteristic due to its imaging mechanism.
For the FPN stripe removal, there exist various kinds of
methods: reference-based approaches [7], filtering-based meth-
ods [8], [9], the scene-based optimization methods [10]–[12],
and the learning-based method [13], [14]. Ratliff et al. [7]
proposed an algebraic-based algorithm which assumed that
each infrared focal plane arrays (IFPAs) detector output obeys
an approximate linear irradiance voltage model. Cao et al. [9]
took advantage of the directional characteristic of the FPN
and proposed a 1-D guided filter for stripe noise removal
in infrared images. The optimization-based sparsity methods
have been popular in recent years. Vera et al. [10] pro-
posed an isotropic total variation approach making use of
an alternating minimization strategy for FPN removal. Fur-
thermore, the L0 gradient-based iterative adaptive nonuniform
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Fig. 2. Overview of the proposed DMRN for nonuniform correction in the IFPA. Our method contains two main parts: multiscale feature extraction and
image reconstruction. In the first stage, we gradually downsample and upsample the features with skip connections. Then, we fuse the multiscale features for
better representation of the IFPA images. In the second stage, we reconstruct the image from the output of the first stage. The residual learning is utilized
both in short and long distance for better information propagation. The two stages are trained in an end-to-end manner.

correction method has been proposed [11], which assumed
the gradient of the image is much sparser. Recently,
Kuang et al. [13] presented a three-layer deep convolutional
neural network (CNN) for single infrared image stripe noise
removal.

Although numerous FPN correction methods have been
proposed in the past decades, all of them are designed for one
specific task only, such as the nonuniform bias field [1]–[5]
or nonuniform stripe noise [7], [9]–[14]. Moreover, most of
the previous works utilized the hand-crafted features, such as
the gradient or the dictionary coefficients. These hand-crafted
priors only explore the locally shallow feature information
of the images while ignoring the global high-level feature
of the images. To overcome these limitations, we propose
a deep multiscale residual network (DMRN) for infrared
nonuniform correction. We introduce a very deep CNN model
for extracting the high-level contextual information of the
images, in which the discriminative features are benefit to
distinguish each component in (1) from each other. Our model
does not rely on any predefined statistical assumption of the
FPN or the image, which makes it very robust for arbitrary
degradations. In addition, we utilize the multiscale information
in the images via the CNN for better representation of both
the large-scale edge and fine texture in the images. Overall,
the contributions of this letter are as follows.

1) This letter proposes a very deep CNN model for unified
infrared nonuniform bias field and stripe correction.
Compared with the previous methods, the deep features
are more representative for both the IFPA image and
artifacts.

2) We introduce the long–short-term residual learning strat-
egy, which significantly reduces the difficulty of training.
In addition, the multiscale network could utilize the
multiscale property in the images; meanwhile, it can
obviously reduce the computational load and memory.

3) The proposed method outperforms the state-of-the-art
(SOTA) methods by a large margin in terms of the speed,
qualitative, and quantitative assessments. Moreover, our
method is very robust to the random noise in IFPA
images.

II. DEEP MULTISCALE RESIDUAL NETWORK

Here, we will give our unified DMRN for FPN removal.
Although there are several deep learning-based methods for
infrared stripe noise removal, the depth of them is too shallow,
such as three layers in [13] and ten layers in [14]. On the
contrary, we take the multiscale information of the image into
consideration and enlarge the receptive field via the multiscale
feature extraction module.

A. Multiscale Feature Extraction
It is well-known that the images contain different scales of

information, such as the large-scale edges and the fine textures.
On the one hand, the fine textures can be well represented by
the shallow features with a relative small receptive field. The
large-scale edges can be globally captured by the deep features
with a relative larger receptive field. This motivates us to build
a very deep network to globally capture both the local fine
texture and global large edges. On the other hand, we argue
that the multiscale structural information, which is benefit
for image representation, need to be explicitly modeled by
different scales of feature maps. This motivates us to construct
a multiscale pyramid network to explicitly depict different
scale structures.

The deep pyramid strategy has been extensively used in
image segmentation [15], image restoration [16], due to its
powerful representation ability. In this letter, we introduce
a DMRN for infrared nonuniform FPN removal, as shown
in Fig. 2. We first downsample the image gradually via the
convolutional layer with the stride 2. In this letter, we extract
four scale features from the original size 256×256 to 32×32.
This part can be regarded as an encoder to extract the compact
and multiscale representations. Then, we gradually upsample
the image via the deconvolution layer with the scale 2. This
part can be regarded as a decoder to reconstruct the signal.
The skip connection is introduced, where all the features
with the same size are concatenated together, to improve the
information flow among different layers. We also introduce
the residual blocks [17], which create short paths among
neighborhood features, to alleviate gradient vanishing and train
a very deep model.

To leverage the multiscale information to guide the
nonuniform correction, a connectivity fusion layer is further
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Fig. 3. Simulated nonuniform bias field removal results under different degradation levels. The first and second rows show different bias fields. (Left to
Right columns) (a) Original IR image. (b) Biased field noise image. Correction results by (c) GCF, (d) TVD, and (e) DMRN.

introduced, where the multiscale features from decoders are
fused together. The intuitions behind this are twofolds. On the
one hand, fusing the low-resolution features with the high-
resolution features actually creates an information flow for
better information propagation between low and high levels.
On the other hand, this could better compensate low-level
fine details to high-level large-scale features with joint and
powerful representation for the images.

B. Reconstruction
In the second stage, the extracted multiscale features are

the input of the reconstruction module which is used to obtain
the clear image. Here, we use two convolutional blocks to
achieve this goal. Note that we do not learn the mapping of
the clear image directly. We introduce the residual learning
strategy by adding a skip connection between the input and
output. Thus, the network actually learns the whole error (B +
E + N), it guarantee that sparser gradient of the residual errors
is easier to propagate. To reconstruct the image, we introduce
the L2-based loss function

J = 1

2
||F(Y; W) − (B + E + N)||2 (2)

where W is the mapping parameters to be learned. We intro-
duce both the resblock (short-term residual) and residual
learning (long-term residual) to increase the representation
ability of the network. The residual learning greatly improves
the depth of the network and avoids gradient vanishing issue.

C. Training Details
The MatConvnet toolbox [18] is employed to train the

model. The training code and IR data sets of our DMRN have
been released at the homepage of the author.1 We initialize the
convolutional filters with the Xavier method [17]. The learning
rate starts from 0.0005 and is divided by 2 after each 20 epoch.

1http://www.escience.cn/people/changyi/index.html

TABLE I

AVERAGE QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER

SEVERAL BIAS FIELD LEVELS ON 20 TEST IR IMAGES

The momentum and decay are fixed as 0.9 and 0, respectively.
Adam solver [19] is used as optimization algorithm with a
minibatch size of 48. We train the model with 100 epoches.
We randomly choose 10 000 samples from the Place 2 data
set with size 256×256 for pretraining. Then, we fine-tune the
pretrained models on the collected 1500 midwave IR images.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setting
For the bias field removal, we compare with the gradient

components-based filtering (GCF) method [2] and TV-based
decomposition (TVD) methods [3]. For the stripe noise
removal, we compare with the low-rank single image decom-
position (LRSID) [12] and deep-learning-based stripe non-
uniformity correction [14]. We use the codes provided by
the authors and fine-tune the hyperparameters by default to
achieve the best performance. The PSNR and SSIM are
employed for the quantitative index. The visual correction and
cross profile are used as the qualitative assessment. Due to the
page limitation, more results and analysis are placed in the
supplementary.

B. Comparison With STOA
1) Bias Field Correction: We compare DMRN with SOTA

for nonuniform bias field correction in the IR images.
In Fig. 3, the GCF and TVD always introduce unexpected
artifacts (marked by the red ellipse). The results of the
proposed method are almost the same as the original image.
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Fig. 4. Simulated nonuniform stripe noise removal results under different degradation levels. The first and second row show the light and heavy stripe noise,
respectively. From the left to right columns (a) Original IR image. (b) Striped image. Correction results by (c) LRSID, (d) DLS-NUC, and (e) DMRN.

TABLE II

AVERAGE QUANTITATIVE RESULTS OF DIFFERENT METHODS UNDER
SEVERAL STRIPE LEVELS ON 20 TEST IR IMAGES

Fig. 5. Cross profile analysis for the nonuniform correction. Horizontal axis:
column number of the IR image. Vertical axis: intensity value of the IR image.
(a) Cross profile of a certain row. (b) Zoomed-in view of (a).

The DMRN+ in Table I denotes the fine-tuned DMRN
model. Under different conditions, the proposed DMRN
consistently outperforms the SOTA bias field correction
methods.

2) Stripe Noise Removal: We compare DMRN with SOTA
methods for nonuniform stripe noise correction in the IR
images. Here, we test them on different stripe noise levels
and larger image size 480 × 480, as shown in Fig. 4. We can
observe there exist obvious residual stripe noises in the cor-
rection results of LRSID and DLS-NUC as marked by the red
ellipse, while in Fig. 4(e), the corrections results by DMRN
are more visually pleasing. The quantitative comparison results
are given in Table II. The DMRN is robust to different noise
levels and image sizes and consistently outperforms the SOTA
IR stripe correction methods.

Fig. 6. Joint nonuniform correction. (a) Original IR image. (b) Degraded
image. (c) Correction results of DMRN.

C. Discussion

1) Cross Profile Analysis: In this section, we analyze the
cross profile of the correction result, as shown in Fig. 5.
We take the stripe noise correction (first row in Fig. 4) as
an example. From the zoomed-in view of Fig. 5(b), we can
clearly observe that the correction result of DMRN (red curve)
is much more closer to the original ground truth (black curve).
Moreover, compared with the green curve of the striped image,
we can infer from the smoothed red curve that the nonuniform
stripe noise has been satisfactorily removed.

2) Joint Nonuniform Correction: We further demonstrate
that our model is not only suitable for one specific nonuniform
artifacts in IR but also works well for arbitrary mixed nonuni-
form artifacts, due to the universal approximation theory of the
deep neural network [20]. We test the DMRN on the mixed
stripe and bias field, which are commonly seen nonuniform
artifacts in IR image, along with the Gaussian random noise,
as shown in Fig. 6. As far as we know, there is no way to
uniformly correct all of these artifacts. The DMRN [Fig. 6(c)]
can well remove the artifacts and preserve the edge structure.

3) Benefit For Recognition: To validate the effectiveness of
the proposed method for subsequent application, we employ
Google Vision API2 on the images before and after correction
to perform the scene recognition. Here, we choose a natural

2https://cloud.google.com/vision/
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Fig. 7. Effectiveness of DMRN for the recognition. (a) Google Vision API understanding result of the original image. (b) Bias field severely degrades the
object recognition accuracy. (c) DMRN greatly improves the scene recognition accuracy.

Fig. 8. Effectiveness of the fine-tuning. After the fine-tuning, the training
loss drops drastically, while the PSNR value increase rapidly.

image as an example, since the API is mainly trained on
natural images. As shown in Fig. 7, the bias field on the image
puzzles the API with wrong labels such as light and sky. The
recognition result of the correction by DMRN is almost the
same as that of the original, such as the roof and house.

4) Effectiveness of the Fine-Tuning: To alleviate the lack of
IR image, we first train our model on the RGB image. Then,
we fine-tune our model on the collected IR images. We show
this transfer learning strategy is very effective for nonuniform
correction. In Fig. 8, the training loss and PSNR value of each
epoch are shown before and after the fine-tuning. It can be seen
that the training loss drops suddenly at the epoch we fine-tune
the model, and the loss of the fine-tuned model is significantly
lower than the no fine-tuned model. On the contrary, the PSNR
value increases after we fine-tune the model.

IV. CONCLUSION

In this letter, we propose a DMRN for infrared image
nonuniform correction. We utilize the deep feature that is more
representative and robust to various nonuniform artifacts in
IR image. The multiscale information is used in our network
to better represent the IR images. The residual learning and
fine-tuning strategy are introduced for better training the
network. Experimental results show that the proposed DMRN
is superior to competing deep and nondeep methods by a large
margin.
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