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A Coarse-to-Fine Method for Infrared
Small Target Detection
Shoukui Yao , Yi Chang , and Xiaojuan Qin

Abstract— Infrared small target detection in a complex back-
ground is a challenging problem. A complex background gener-
ally contains structured edges, unstructured clutter, and noise,
which completely have different properties. It is very difficult
to separate small target from these interferences by exploiting
one property. To solve this problem, we propose a coarse-to-
fine method to gradually detect small target. In the coarse
phase, nonlocal self-similarity property of the structured edges
is exploited so as to separate the structured edges from the other
components, such as the random noise, the unstructured clutter,
and also the small target. In the fine phase, we utilize the local
contrast prior of the small target in a local region so as to distin-
guish the small target from the unstructured clutter and noise.
Multiscale information is further introduced to accommodate
the changing size of the small target. This progressive detection
pipeline utilizes the nonlocal, local, and multiscale information
in a single image, which facilitates gradually differentiating the
small target from the structured edges, unstructured clutter,
and noise. Extensive experimental results demonstrate that the
proposed method outperforms the state-of-the-art methods.

Index Terms— Coarse to fine (CF), infrared small target
detection, local contrast, multiscale, nonlocal self-similarity.

I. INTRODUCTION

BECAUSE of the long imaging distance, infrared small
targets usually do not possess concrete shape and texture.

Additionally, infrared small targets are usually buried in strong
edges, heavy unstructured clutter, and noise, such as cloud
background and sea-sky background [1]. Therefore, infrared
small target detection is a difficult and challenging problem,
especially with complex background.

Existing infrared small target detection methods can be
roughly categorized into two classes: sequential detection
methods [2]–[5] and single-frame detection methods [6]–[11].
In this letter, we are interested in the single-frame detection.
Conventional single-frame detection methods can be further
divided into two categories: local prior-based methods and
nonlocal prior-based methods.

Manuscript received December 23, 2017; revised August 12, 2018; accepted
September 17, 2018. Date of publication October 15, 2018; date of current
version January 21, 2019. This work was supported in part by the projects of
the National Natural Science Foundation of China under Grant 61571207 and
Grant 61433007 and in part by the National Key Research and Develop-
ment Program under Grant 2016YFF0101502. (Shoukui Yao and Yi Chang
contributed equally to this work.) (Corresponding author: Yi Chang.)

The authors are with the National Key Laboratory of Science and Tech-
nology on Multispectral Information Processing, School of Automation,
Huazhong University of Science and Technology, Wuhan, China (e-mail:
yichang@hust.edu.cn).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this letter are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2018.2872166

Fig. 1. Infrared image can be decomposed into a structured layer and an
unstructured layer.

Local prior-based methods include filtering methods, such
as top-hat filtering [8] and max-mean/max-median filtering [9],
to name a few. Chen et al. [7] proposed the local contrast
measure (LCM), which measured the dissimilarity between
the current location and its neighborhood. Han et al. [10]
proposed an improved LCM (ILCM), which further considered
the mean estimation of the central subblock. However, these
methods cannot separate small target with strong structured
edges, because LCM is sensitive not only to small target but
also to strong structured edges.

Gao et al. [6] formulated small target detection as an
optimization problem of recovering low-rank and sparse matri-
ces. This method effectively separated the structured edges
from the sparse small target by exploiting the nonlocal self-
similarity property. Bai et al. [11] exploited nonlocal self-
similarity to estimate the background in infrared images for
infrared small target detection. They have shown the effective-
ness for structural edge modeling. However, the performance
of these nonlocal prior-based methods degrades rapidly as the
unstructured clutter and noise increase, because unstructured
clutter and noise do not satisfy nonlocal self-similarity in the
same way as the small target.

It is difficult to separate small target from complex back-
ground with just one prior. Therefore, we propose to combine
the advantages of nonlocal and local prior and formulate the
problem into a coarse-to-fine (CF) framework to gradually
detect small target. In the coarse phase, we separate the
structured edges from the small target, unstructured clutter,
and noise by exploiting the nonlocal self-similarity in the
image [12], [13]. To achieve this goal, an infrared image
is decomposed into a structured layer and an unstructured
layer. As shown in Fig. 1, the structured layer includes
structured edges. The unstructured layer mainly contains small
target, unstructured clutter, and noise. After the structured
edges are removed, the small target appears distinct from
the unstructured clutter and noise in the local zone. In the
fine phase, we separate the small target from the unstructured
clutter and noise in the unstructured layer by using the local
prior. A multiscale modified LCM (MLCM) is proposed to
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Fig. 2. Framework of our proposed method includes a coarse phase and a fine phase. In the coarse phase, an infrared image is decomposed into a structured
layer and an unstructured layer via the low-rank decomposition. In the fine phase, small targets are distinguished from the unstructured clutter and noise.
Targets are labeled by red boxes. First row: progressive detection procedure of the image. Second row: corresponding local contrast map.

distinguish the small target from the unstructured clutter and
noise. The overall framework is shown in Fig. 2.

This letter is in line with the recently proposed reweighted
infrared patch-tensor model [14]. The key insight of the two
work is similar: both the nonlocal and local priors are benefit
for the small target detection, and they are complementary to
each other. As for the difference, in [14], they simultaneously
utilize the local and nonlocal properties in the image and
formulate the detection problem as an optimization problem
in a unified framework. While in this letter, our philosophy
is to decouple the complex problem into two simpler
subproblems. Within such a CF pipeline, in each subproblem,
we gradually obtain the small target. In addition, we take the
multiscale operation into consideration for a better detection
in the second stage.

The following contributions are made in this letter: 1) we
propose to decompose a complicated problem into simple
subproblems in which the small target is gradually extracted
from the complex background; 2) we make use of the non-
local, local, and multiscale information in a single image to
gradually separate the small target from the structured edges,
unstructured clutter, and noise; and 3) experimental results on
several real image sequences demonstrated that our method
outperforms the state-of-the-art methods.

II. PROPOSED METHOD

It is difficult to separate the small target from complex
background directly. Therefore, we propose to detect the small
target with a CF process.

A. Coarse Phase

The structural information in the infrared image usually
has sharp edge and similar structural information among its
local neighborhoods. While for the unstructured information,
we mainly refer it as the random noise, the clutter, and also
the small target, which exhibit singular characteristic in the
infrared image. That is to say, we mainly utilize the self-
similarity property of the infrared image to differ the structural
(edge) from unstructured information (noise, clutter, and small
target). To illustrate this, as shown in Fig. 2, we utilize the

structural self-similarity property of the infrared image by
applying the low-rank decomposition. We can observe that an
infrared image (first row, first image) can be well decoupled
into two images: one mainly with structured edges (first
row, second image) and one mainly with unstructured cluster
and small target (first row, third image). This result is very
reasonable. Structured edges possess nonlocal self-similarity
property, while the unstructured clutter, the noise, and the
small targets have sparse/singular property. Thus, we consider
the edges in the infrared image as a structured layer and
regard the other part of the infrared image as an unstructured
layer. In the coarse phase, we separate the structured layer by
exploiting the nonlocal self-similarity property in the coarse
phase and then go one step further in the fine phase. We math-
ematically formulate the image decomposition as follows:

A = U + E (1)

where A is an infrared image, U is the structured layer, and
E is the unstructured layer. U is a low-rank matrix for the
structured layer that contains the nonlocal self-similarity

rank(U) ≤ η (2)

where η is a constant. As the background becomes more
complex, the value of η will increase. The unstructured layer
E includes small target, unstructured clutter, and noise. In gen-
eral, the variance of the unstructured layer is limited

�E�1 ≤ δ (3)

where �E�1 = ∑
i j |Ei j | and δ is a positive constant.

The decomposition problem can be solved by the robust
principal component analysis [15]–[17]

{Û, Ê} = arg min
U,E

�U�∗ + λ�E�1, s.t. A = U + E. (4)

This formula implicitly assumes that the structured layer is a
single low-rank subspace. However, in most cases, the struc-
tured layer is drawn from a union of multiple subspaces.
The decomposition may be inaccurate if the specifics of the
multiple subspaces are not well defined. To better handle the
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Algorithm 1 Image-Layer Decomposition
1: input: Infrared image A, parameter λ, η.
2: output: Structured layer DZ and unstructured layer E.
3: initialization: Z = J = 0, E = 0, Y1 = 0, Y2 = 0,

μ = 10−6, μmax = 106, ρ = 1.1, and ε = 10−8.
4: while not converged do
5: Z = J + η(DT D)−1 DT (A − E);
6: Fix the others and update J by,
7: J = arg min 1

μ �J�∗ + 1
2 �J − (Z + Y2/μ)�2

F ;
8: Fix the others and update Z by,
9: Z = (I + DT D)−1(DT (A − E) + J + (DT Y1 − Y2)/μ);

10: Fix the others and update E by,
11: E = arg min λ

μ
�E�1 + 1

2 �E − (A − DZ + Y1/μ)�2
F ;

12: Update the multipliers,
13: Y1 = Y1 + μ(A − DZ − E), Y2 = Y2 + μ(Z − J);
14: Update the parameter μ by μ = min(ρμ,μmax);
15: Check the convergence conditions:
16: �A − DZ − E�∞ < ε and �Z − J�∞ < ε.
17: end while

decomposition operation, we adopt the low-rank representation
model to formulate the decomposition problem as

{Ẑ, Ê} = arg min
Z,E

�Z�∗ + λ�E�1, s.t. A = DZ + E (5)

where D is a “dictionary” that linearly spans the data space.
After obtaining an optimal solution Ẑ, we obtain the struc-
tured layer by using DẐ. We adopt the augmented Lagrange
multiplier (ALM) method [15], [18]. We first convert (5) to
the following equation:

{Ẑ, Ĵ , Ê} = arg min
Z,J ,E

�J�∗ + λ�E�1

s.t. A = DZ + E, Z = J (6)

where J is an auxiliary variable. The algorithm for solving
the problem (6) by inexact ALM is shown in Algorithm 1.
For simplicity, we set D as A similar to [19]. Lin et al. [18]
demonstrated that Algorithm 1 has favorable convergence
properties. It is worth noting that, to compensate the target that
may be shrink by singular value shrink/threshold, we follow
the iterative regularization [12], which can be regarded as an
error retrieve strategy.

B. Fine Phase

After the structured edges have been separated in the coarse
phase, the small target is left in the unstructured layer together
with the clutter and noise. In the fine phase, the multiscale
MLCM based on the local prior is proposed to separate the
small target from the clutter and noise. Assume w ∈ R

2

denotes the domain on which the unstructured layer E is
defined. u and v denote pieces of the domain and satisfy
u ⊂ v ⊂ w. Thus, Eu is a patch within patch Ev , and Ev

is a patch within the image Ew . The relationship of u, v, and
w is shown in Fig. 3(a). We define u and v to be squares. The
side length of v is triple the side length of u. Nine neighboring
uniform squares can be obtained by placing u on v. The nine
uniform squares are shown in Fig. 3(b). u0 is the central cell.

Fig. 3. (a) Relationship of domains u, v , and w. (b) Central cell u0 and the
surrounding cells u1 ∼ u8.

u1 ∼ u8 are the surrounding cells. The LCM [7] is defined as

LCM = min
i

(L f )
2

mi
(7)

where L f represents the first largest gray value of the central
cell, and mi represents the mean gray value of the i th
surrounding cell. The central cell and surrounding cells are
shown in Fig. 3(b). The LCM can effectively enhance the
small targets and suppress background. However, the single-
point noise would also be enhanced, while a homogeneous and
less bright target would be weakened. To solve these problems,
we propose to consider the second largest gray value of the
central cell and the local similarity.

We present to replace (L f )
2 with L f × Ls , where Ls

represents the second largest gray value of the central cell.
Generally, the first and the second largest gray value of the true
targets are nearly the same, while that are widely different in
a cell containing strong single-point noise. The second largest
gray value can enhance the true targets but not the single-point
noise. We introduce |m0 − mi | to evaluate the local similarity
between the central cell and the surrounding cells, where m0
is the mean gray value of the central cell. The local similarity
reflects the difference of all of the pixels between the central
cell and the surrounding cells. The local similarity can weaken
the single-point noise and enhance the homogeneous and less
bright targets. Thus, the MLCM is defined as

MLCM = min
i

|m0−mi |×L f × Ls

mi
, i ∈ [1, 2, . . . , 8]. (8)

When u0 is a small target, then m0 > mi , L f ≈ Ls , and
Ls > mi , and the target will be enhanced. When u0 is a piece
of unstructured clutter, then |m0 − mi | ≈ 0 and L f ≈ Ls ≈
mi , and the unstructured clutter will be suppressed. When u0
is a zone containing single-point noise with high brightness,
then |m0 − mi | ≈ 0, L f > Ls , and Ls ≈ mi , and the single-
point noise will be suppressed.

The differences between MLCM and LCM are as follows.
First, MLCM uses not only the largest gray value but also
the second largest gray value of the central cell for suppressing
the single-point noise. Second, MLCM exploits the local
similarity to enhance the homogeneous and less bright small
targets and further suppress the single-point noise. We calcu-
late MLCM on a multiscale to accommodate the changing size
of the small target, as shown in Algorithm 2.

We conduct an experiment to compare the MLCM with
LCM [7] and ILCM [10]. An example of the results is
shown in Fig. 4. Clearly, the MLCM outperforms all other
contrast-based methods. Furthermore, we compare the results
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Fig. 4. Comparison of the local contrast maps calculated by different methods, including LCM, ILCM, and MLCM. It is clear that the MLCM outperforms
the other local contrast-based methods. The MLCM on the unstructured layer outperforms that on original image. The target in the original image is labeled
by red box.

Algorithm 2 MLCM Computation
1: input: Unstructured layer E, patch-size l.
2: output: Local contrast map M l .
3: Slip patch v on image E to get overlapped patches vn ,

n ∈ {1, 2, · · · , N };
4: for n = 1 : N do
5: Slip patch u on patch vn to get nine neighboring patches

ui , i ∈ {0, 1, · · · , 8};
6: Compute the largest and the second largest value of the

central cell,
7: L f = max(I ∈ Eu0), Ls = max(I ∈ Eu0 |I 
= L f );
8: for i = 0 : 8 do
9: Calculate the mean value, mi = 1

Nui

∑

( j,t)∈ui

E j t ;

10: end for
11: Calculate the MLCM on patch u0 within vn , Mn

l =
min

i

|m0−mi |×L f ×Ls
mi

, i ∈ [1, 2, · · · , 8];
12: end for

of MLCM on the original image and the unstructured layer.
The results show that the MLCM performs better on the
unstructured layer than that on the original image. This
demonstrates that the extraction of the structured edges in the
coarse phase is beneficial to the detection. More evidence to
demonstrate the effectiveness of MLCM can be found in the
Supplementary Material.

III. EXPERIMENTS AND ANALYSIS

We compare the proposed CF algorithm with the
infrared patch-image model-based method [6], the LCM [7],
the ILCM [10], the top-hat method [8], and the max-
mean/max-median method [9]. The codes of these algorithms
are obtained from the websites of the authors, and the default
parameter settings are used.

We have performed simulating experiments to evaluate the
parameters for the method. In the coarse phase, the size of the
sliding window is set as 40 × 40, and the size of the step is
set as 7. In the fine phase, the size of the central patch u0 is
set at 3 × 3 and 5 × 5 for the multiscale MLCM calculation.
Due to the limited space of GRSL, we place the parameter
analysis in the Supplementary Material.

In the experiments, we use the detection rate (Rd ) and false
alarms (Fa) per image sequence as standards for comparison.

Fig. 5. All of the experimental image sequences have complex background
and different clutters. The detailed description of the image sequences can be
found in the Supplementary Material. The targets have been labeled by red
boxes.

Fig. 6. Comparison of detection results of an example.

We define that Rd = (CN/TN) × 100% and Fa = ICN/IN,
where CN is the number of correctly detected targets, TN is
the number of true targets, ICN is the number of incorrectly
detected targets, and IN is the number of images in the
sequence. Experimental data sets are shown in Fig. 5. There
are six real infrared image sequences.

The CF method succeeds in detecting the true target without
any false alarms. While the competing methods identify the
true target, there are still false alarms (see Fig. 6). The false
alarms are clutter with high brightness, such as sea waves. It is
clear that the CF method outperforms the competing methods
for target detection in the representative images.

To further validate the generalization of the CF algorithm,
we compare the probability of detection of the completing
methods under several false-alarm rates. In Table I, the detec-
tion results on six infrared image sequences are shown. It is
clear that the proposed CF method outperforms all of the other
methods. The CF method has a higher probability of detection
compared to the other methods when the false-alarm rates
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TABLE I

DETECTION RESULTS OF OUR ALGORITHM COMPARED WITH THE OTHER METHODS ON SIX REAL INFRARED IMAGE SEQUENCES. IT IS SHOWN THAT
OUR METHOD HAS THE HIGHEST PROBABILITY OF DETECTION COMPARED TO THE OTHER METHODS WHEN THE FALSE-ALARM RATES ARE

LOW. THE BOLD NUMBER REPRESENTS THE HIGHEST PROBABILITY OF DETECTION UNDER THE CORRESPONDING FALSE-ALARM RATE

are low. The results show that the proposed method is more
stable for different complex backgrounds and target types.

The proposed method contains a coarse phase and a fine
phase. In the coarse phase, the nonlocal self-similarity of
the background is exploited to extract the sharp-structured
edges. In the fine phase, the proposed multiscale MLCM is
used to separate small targets from the other clutters and
noise. Both the nonlocal and local priors along the multiscale
prior are employed in a CF pipeline to gradually separate
the small targets from the complex background. Comparing
with the other sole-prior-based and sole-phase-based methods,
our CF method performs better under complex background.
We have also conducted the experiments on synthetic images
to demonstrate the performance of the proposed method. The
experimental results and analysis are placed in the Supplemen-
tary Material.

IV. CONCLUSION

In this letter, we propose a CF method for infrared small
target detection. The key idea of infrared small target detection
is to decouple the original problem into two easier sub-
problems with clear physical meanings. In the coarse phase,
the structured edges are removed by exploiting the nonlocal
self-similarity prior. In the fine phase, the local prior-based
multiscale MLCM is proposed to separate small target from
unstructured clutter and noise. As a result, the small target
is gradually separated and detected via the nonlocal prior,
local prior, and multiscale information. Experimental results
demonstrate that the proposed algorithm outperforms the state-
of-the-art algorithms. In the future work, we would like to
speed up the proposed method for real-time application.
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