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Abstract—Aircraft landmark detection (ALD) aims at detect-
ing the keypoints of aircraft, which can serve as an important
role for subsequent applications such as fine-grained aircraft
recognition. In ALD, the physical size discrepancy between
different kinds of aircraft may lead to inconsistent landmark
structure, which significantly harms landmark detection results.
In this letter, we take advantage of the category prior to alleviate
the size discrepancy in ALD. The proposed category-aware
landmark detection network (CALDN) possesses two streams:
a classification stream for size categorization and a localization
stream for landmark detection. Instance-level size category infor-
mation captured by classification stream serves as the guidance in
the localization stream for robust landmark detection. Moreover,
a category attention module (CAM) is proposed for better-
utilizing category information to guide ALD. Benefitting from the
adaptive attention mechanism, CAM can automatically highlight
category-specific features for ulteriorly reducing the influence
of size discrepancy. Furthermore, to advance ALD research, we
contribute the first perspective-variant aircraft landmark dataset.
Solid experiments demonstrate the superiority of our method.

Index Terms—Aircraft, landmark detection, category informa-
tion, convolutional neural networks

I. INTRODUCTION

A IRCRAFT landmark detection (ALD) refers to the task
of detecting a set of pre-defined keypoints of aircraft in

a given image, which is of great use to numerous subsequent
applications such as fine-grained recognition [1], [2], part-
based recognition [3], and 3D reconstruction [4]–[6].

In the past years, only a few works [1], [7], [8] have been
proposed to solve ALD problem. Zhao et al. [1] predicted
aircraft landmark locations directly from the given image
through a regression network. However, these works mainly
focused on landmark detection only in aerial images, which
possess less view variation or self-occlusion due to the single
orthographic view. In this letter, we mainly focus on the
problem of aircraft landmark detection in variant perspective.

Besides, many works have been proposed to solve keypoints
locating problems like human pose estimation [10]–[16] and
facial landmark detection [17]–[23]. Most methods aimed at
learning a robust feature representation [11], [13]–[16] or
establishing geometric relation between joints or landmarks
[22], [23]. However, human bodies or faces, which share the
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Fig. 1. Analysis of the influence of the fine-grained aircraft category. The
aircraft are classified into large, medium and small according to the physical
size. In general, aircraft belong to the same size category usually possess
structure consistency [9]. Each row and column represents the training and
testing data category respectively. Results trained with relevant category of
data always perform better and possess less ambiguous prediction than other
results, denoting the existance of intra-class size discrepancy.

same category as they all possess similar components and
structures, are different from objects in ALD with significant
intra-class size discrepancy between different kinds of aircraft.

To illustrate the influence of the aircraft category, we train
three different models for aircraft with large, medium and
small size categories respectively. The confusing matrix results
are shown in Fig. 1. We can observe that introducing the
relevant categories for training and testing always leads to
the best performance. Furthermore, the closer the training and
testing data size categories are, the better performance can be
obtained. That is to say, there does exist the size discrepancy
between aircraft with different categories. It motivates us
to take size category discrepancy among the aircraft into
consideration for fine-grained feature representation, so as to
facilitate robust aircraft landmark detection.

In this work, we propose a novel category-aware land-
mark detection network (CALDN) possessing two streams:
a classification stream for aircraft size categorization and
a localization stream for landmark detection. The category
understanding sub-network in the classification stream receives
the entire image as input and learns to extract category-
specific features. Then the extracted features are merged with
landmark features in the localization stream via a specially
designed category attention module (CAM), which can auto-
matically highlight category-specific information and generate
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Fig. 2. Overview of the proposed CALDN, which is composed of two streams: a classification stream (blue arrows) for category understanding and a
localization stream (green arrows) for landmark detection. Given an input image, category understanding sub-network is used to capture category-specific
features, followed by category-aware attention vector generation. Then the learned attention vector selectively highlights the landmark features in localization
stream. Finally, the highlighted features are fed into landmark detection sub-network for landmark prediction.

fine-grained feature representation adaptively. The landmark
detection sub-network finally takes the merged features as
input to generate accurate landmark prediction. With category
information serving as guidance, the proposed CALDN can
reduce the feature ambiguous results caused by similar visual
appearance and achieve better performance.

In addition, since there are few open datasets specially
designed for ALD, we contribute a new perspective-variant
aircraft landmark dataset to advance the development of ALD
research, which contains 7819 images annotated with 12
landmark locations, bounding boxes, and size categories.

Our contributions are summarized in the following aspects.
• Firstly, to the best of our knowledge, we are the first to

take advantage of size category prior for aircraft landmark
detection, which endows the network with the ability to
utilize category information to alleviate size discrepancy
and achieve better landmark detection performance.

• Secondly, we introduce a specially designed category
attention module for aircraft landmark detection which
is capable of learning to exploit aircraft category in-
formation through an adaptive attention mechanism for
category-dependent landmark feature representation.

• Thirdly, we construct the first perspective-variant aircraft
landmark dataset, which provides comprehensive land-
mark annotations for the aircraft with different size cat-
egories. Extensive experiments and analyses demonstrate
that the proposed method outperforms the state-of-the-art
both qualitatively and quantitatively.

II. CATEGORY-AWARE LANDMARK DETECTION

A. Overview of CALDN

Most existing landmark locating methods [11], [14]–[16]
directly learn the mapping from the input image to landmark
location, which mainly exploit the local visual features. How-
ever, due to the size discrepancy among different kinds of
aircraft, only utilizing local visual appearance information may
lead to ambiguous results, especially when there exist high
visual similarity parts in the image. To address this problem,
we endow the network with the ability to understand instance-
level size category and enforce landmark predictions to be
coherent with the captured category information.

As illustrated in Fig. 2, CALDN is composed of two relevant
components, a classification stream for instance-level size
category parsing and a localization stream for accurate land-
mark detection. Specifically, the first component is category
understanding sub-network which receives the entire image as

input and learns to extract category-specific features X′ auto-
matically. The localization stream is trained to infer landmark
locations from the input image, in which feature mapping sub-
networks is to map the input image to feature space X. Then
the two intermediate features from two streams are merged
according to a specially designed category attention module.
The merged maps X̃ are then fed into landmark detection
sub-network to generate landmark prediction coherent with
category information extracted by classification stream.
B. Category Attention Module

As size category information is of great importance to
ALD, how to utilize category-specific information and merge
features are the key issues for accurate landmark detection.
There are two straightforward options to merge features from
two different streams: channel-wise concatenation [24], and
point-wise addition [25]. However, these strategies are un-
learnable and cannot adaptively make adjustments according
to the input feature [26]. As features from classification
stream encode category-specific information and features in
localization stream mainly focus on visual appearance, utiliz-
ing category-specific features to highlight landmark features
dynamically is a reasonable idea. Thus we design a trainable
category attention module to adaptively generate category-
specific representations for ALD.

Let X′ ∈ RH′×W ′×C′
and X ∈ RH×W×C be the features

from two network streams. As shown in Fig. 2, given both
X′ and X as input, CAM first squeezes the category-specific
features X′ by global average pooling, followed by a fully-
connected layer with activation to obtain category attention
vector U ∈ R1×1×C . Then the merged maps are generated
by X̃ = X

⊗
U, where

⊗
denotes the channel-wise multi-

plication. Finally, CAM exports the merged maps to generate
landmark prediction.

Benefitting from the learnable attention mechanism, CAM
can adaptively highlight features through category-specific
information and endow algorithm with the ability to handle
aircraft with category variation in a single network. With
category information merged, the network can automatically
constrain landmark prediction to be coherent with instance-
level guidance. Furthermore, we adopt extra category super-
vision on the top of U′ to explicitly guide the classification
stream to distill category-specific features.

To illustrate the effectiveness of CAM, we visualize the
results with and without CAM in Fig. 3. Without CAM pro-
viding size category information, classical landmark detection
methods are more likely to obtain ambiguous results when
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(a) w/o CAM (b) w/ CAM (c) Ground Truth

Fig. 3. The effectiveness of CAM. Without category information encoded
by CAM, algorithm may locate landmarks wrongly at another instance (e.g.
landmarks on head and left wing are wrongly located on another aircraft). On
the contrary, our method can acquire more precise results with the help of
CAM which leverages category specific information to constrain landmarks
belonging to single aircraft.

facing overlap of aircraft in the given image. On the contrary,
with category information provided in CAM as constraint,
the network is capable of suppressing ambiguous landmark
responses on other similar parts. The results strongly validate
the effectiveness of CAM.
C. Implementation Details

CALDN is end-to-end trainable. We use resnet18 [27] and
HRNet-w32 [15] as our category understanding and landmark
detection sub-networks respectively. Our feature mapping sub-
network consists of three conv blocks, and each conv block
possesses a convolution (with 3×3 kernel), a batch normal-
ization layer, and a ReLU activation layer. The C′ and C in
the CAM are set to 3 and 64 respectively. Localization stream
and classification stream are supervised by MSE loss (Ll) and
cross-entropy loss (Lc) respectively. The total loss Ltotal can
be minimized via Ltotal = ω1Ll + ω2Lc, where ω1 and ω2

are balance parameters, which are set to be 1 and 1e-3.
III. PERSPECTIVE-VARIANT AIRCRAFT LANDMARK

DATASET

Since few datasets are designed for perspective-variant
aircraft landmark detection, in this letter, we construct the
first perspective-variant aircraft landmark dataset (PVALD) to
benchmark and advance the development of aircraft landmark
detection. We select a subset of 7819 images (6246 for training
and 1573 for testing) with different size categories and pose
variations from FGVC-Aircraft dataset [28] and annotate each
aircraft with 12 landmark locations, visibility1, along with
the bounding box of each instance. The definition of the 12
landmarks is shown in Fig. 4(c). We define landmarks mainly
on peaks and joints of aircraft parts for a better description of
aircraft structure and pose. Sample images and annotations
are shown in Fig. 4(a). To provide category information,
we divide the images into three subsets according to the
physical size of the aircraft (similar to Aircraft Design Group
Classification [9]), including the subset of large/medium/small
size. As shown in Fig. 4(b), aircraft belonging to the different
categories possess significant differences in terms of shape and
structure, which further shows the reasonability of the adopted
classification strategy.

IV. EXPERIMENTS

A. Experiments Setting
Evaluation Metrics. We employ two metrics to evaluate the
performance of aircraft landmark detection, PCKh [29] and

1Three states of visibility are defined for each landmark, including visible
(located inside of the image and visible), invisible (inside of the image but
occluded), and outside (located outside of the image).

(a) Landmark Annotation Samples

Large SmallMedium

(b) Size Category

Head Left Trailing Edge Flap Left Horizontal Stabilizer

Tail Cone Right Trailing Edge Flap Right Horizontal Stabilizer

Left Wing Tip Left Leading Edge Flap Vertical Stabilizer

Right Wing Tip Right Leading Edge Flap Front Tail

(c) Legends of Landmarks

Fig. 4. Illustration of landmarks and category definition in PVALD. (a) sample
images and annotations for different aircraft (only visible points are shown).
(b) sample images from different subsets of large/medium/small size category.
(c) legends of 12 landmarks in PVALD.

normalized mean error (NME). PCKh is the percentage of
detected landmarks which fall within the neighborhood of
the ground truth, while the NME is defined as the mean l2
normalized distance between predicted landmarks and ground
truth. Typically, a higher PCKh score or smaller NME value
denotes better landmark detection results.
Competing Methods Since there are few works specially
designed for aircraft landmark detection, we compare CALDN
with six state-of-the-art methods in human pose estimation and
facial landmark detection, including Hourglass [11], PoseAt-
tention [12], PyraNet [13], SimpleBaseline [14], HRNet [15]
and HigherHRNet [16]. For a fair comparison, all competing
methods are fine-tuned on the proposed PVALD.
Training Details. The whole network is trained on four
NVIDIA GeForce GTX 2080Ti GPU with 11GB memory. We
use adam [30] as the optimizer with the initial learning rate of
1e-3. We first train category understanding sub-network and
landmark detection sub-network separately, and then use the
total loss function Ltotal to fine-tune the whole network. Our
source code and dataset will be available on our homepage. 2.

B. Evaluation Results on PVALD

Qualitative Evaluation. Figure 5 shows ALD results on
PVALD. From the first to the third row, we show the
ground truth landmark location, and the results of HRNet
[15] and CALDN. With instance-level category information,
our method obtains more accurate results and eliminates the
wrong predictions caused by similar visual appearance while
HRNet may wrongly locate landmarks to other parts of the
aircraft. These results strongly support the effectiveness of
CALDN. To further evaluate the effectiveness of the proposed
method, we perform more experiments on the data collected
from Google. As shown in Fig .6, CALDN is able to acquire
accurate landmark prediction consistently.
Quantitative Evaluation. Table I reports the PCKh@0.5 and
NME of the competing methods. Note that there are 12
landmarks in our dataset, we merge the scores from the same

2https://owuchangyuo.github.io/
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Fig. 5. Visual comparison of aircraft landmark detection by different methods. Top row shows the ground truth of the landmarks. Middle and bottom rows
show the results of HRNet [15] and CALDN respectively.

TABLE I
COMPARISONS OF PCKH@0.5 SCORES AND NORMALIZED MEAN ERROR (NME) ON PVALD.

Method Head &
Tail cone

Leading
edge flap

Wing
tip

Trailing
edge flap

Horizontal
stabilizer

Vertical
stabilizer PCKh NME

Hourglass [11]* 96.60 79.55 82.30 72.93 83.13 87.95 86.18 0.4140
PoseAttention [12] 97.27 81.87 77.05 78.54 86.40 89.29 87.16 0.3256
PyraNet [13] 97.15 82.69 77.59 81.14 85.06 88.69 87.17 0.3247
SimpleBaseline [14] 97.27 84.25 82.48 76.80 89.32 89.32 88.58 0.3243
HRNet [15] 97.57 85.28 84.13 75.07 90.75 89.53 89.15 0.2952
HigherHRNet [16] 97.53 85.82 84.18 74.59 90.86 89.49 89.19 0.2938
CALDN 97.77 85.96 84.90 76.42 91.37 89.76 89.67 0.2913

TABLE II
EFFECTIVENESS ANALYSIS OF EACH COMPONENT. CI REPRESENTS THE

CATEGORY INFORMATION. CAM AND CS DENOTE THE CATEGORY
ATTENTION MODULE AND CATEGORY SUPERVISION.

CI CAM CS PCKh NME
89.15 0.2952

X 89.12 0.2931
X X 89.41 0.2943
X X X 89.67 0.2913

TABLE III
CLASSIFICATION EFFECTIVENESS AND ORACLE ANALYSIS OF CALDN.

Classification
Accuracy PCKh NME

CALDN 94.22 89.67 0.2913
oracle —– 89.73 0.2905

semantic parts (e.g. left and right leading-edge flap are merged
into leading-edge flap). We can observe that CALDN performs
better than the competing methods for most parts, and outper-
forms the HRNet [15] and HigherHRNet [16] by 0.52% and
0.48% on PCKh separately, which further demonstrates the
effectiveness of our method.

C. Ablation Study

Category Information Fusion and Supervision. We further
conduct experiments to investigate the influence of information
fusion strategy and category supervision in CALDN. As shown
in Table II, the first row denotes the baseline model. The
second-row represents simply broadcasting and concatenating
category information tensor along with the input image. The
third and last row represent CALDN without or with the
category supervision respectively. We can observe that cat-
egory information and CAM does help the network to gener-
ate category-specific representation and obtain better results.
Benefitting from the adaptive feature selection, the results with
CAM outperforms that of simply concatenating the category
information by a large margin, strongly demonstrating the
effectiveness of the attention scheme designed in CAM. More-
over, explicitly utilizing category supervision as constraints

Fig. 6. Landmark detection results on real-world data. The proposed CALDN
is capable of acquiring favorable prediction on aircraft with variant perspec-
tives and categories consistently.

also help the network to distinguish size discrepancy and gains
better results for landmark detection.
Oracle Analysis. In Table III, we compare our method to-
gether with the oracle that has the access to classification
groundtruth information serving as upper bound. With quite
accurate guidance provided by the category-parsing network,
our CALDN result is not far from that of the oracle. Moreover,
comparing the upper bound performance represented by the
oracles, it is possible to know that accurate category infor-
mation can indeed improve ALD, which further supports the
importance of category prior for aircraft landmark detection.

V. CONCLUSION

In this work, we present a novel category-aware aircraft
landmark detection network, which adopts size category in-
formation to alleviate the size discrepancy among different
kinds of aircraft. We incorporate the category knowledge via
CAM to endow network the ability to highlight features for
robust landmark detection adaptively. Moreover, to advance
the development of ALD, we propose a new perspective-
variant aircraft landmark dataset. Solid improvements over
SOTA methods demonstrate the effectiveness of CALDN.

Furthermore, to alleviate the burden of human annotation
and develop the potential of ALD for subsequent tasks, it
is valuable to study aircraft landmark detection in weakly-
supervised [31], [32] and unsupervised [33], [34] manner,
which will be further explored in our future works.
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