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We propose a maximum a posteriori blind Poissonian images deconvolution approach with framelet regularization
for the image and total variation (TV) regularization for the point spread function. Compared with the TV based
methods, our algorithm not only suppresses noise effectively but also recovers edges and detailed information.
Moreover, the split Bregman method is exploited to solve the resulting minimization problem. Comparative results
on both simulated and real images are reported. © 2013 Optical Society of America
OCIS codes: 100.1455, 100.1830, 100.3020, 100.2000.

In recent years, blind Poissonian images deconvolution
methods have received significant attention due to their
wide application in microscopy, medical, and astronom-
ical imaging (see [1] for a review and [2–4]). Formally,
the blurred noisy image g ∈ RN (N is the number of
pixels of the image.) can be represented in two equiva-
lent matrix-vector notation forms

g � P�Hu� � P�Uh�; (1)

where H ∈ RN×N denotes the matrix notation of the
convolution of the point spread function (PSF) h ∈ RN

and U ∈ RN×N denotes the matrix formed from the
latent image u ∈ RN . P denotes the Poisson noise pro-
cess. The purpose of blind image deconvolution (BID)
is to seek the best estimations of u and h from the
degraded image g. However, owing to the ill-posed nature
of BID, regularization is necessarily introduced in order
to enforce stability, as well as incorporate prior knowl-
edge about the solution [5]. In the existing regularization
methods, the total variation (TV) [6] and wavelet frames
[7] are two widely adopted regularizers for image restora-
tion. However, the TV model favors a piecewise constant
solution, which leads to the staircase effect. In previous
work [4], we proposed the spatially adaptive TV (SATV)
model using the edge indicator to distinguish edges from
flat areas in order to reduce the noise in flat regions as
well as preserve edge and detailed information. Never-
theless, undersignificant noise and heavy blur, the perfor-
mances of the SATV and TV are similar. To alleviate the
staircase effect, some high order differential operators
[8] were proposed to replace the first-order gradient
operator in the TV model. Recently, framelet regulariza-
tion has been introduced in motion deblurring [7], which
assumes that natural images have sparse approximation
under the framelet transform. Since framelet transform
has the ability of multiple-resolution analysis in nature,
different framelet masks reflect different orders of differ-
ence operators, which can adaptively capture multiscale
edge structures in an image. Therefore, it can well pre-
serve various types of edges simultaneously. It motivates
us to apply framelet regularization in blind Poissonian
images deconvolution. The proposed method can

preserve different scale structure information of the
images and produce a smoother solution. Moreover, it
can efficiently suppress noise.

Considering the cases where the data is contaminated
by Poisson noise, the intensity of each pixel gi in the
observed image is a random variable that follows an
independent Poisson distribution. Hence the likelihood
can be written as

p�gju; h� �
YN
i�1

�Hu�gii exp �−Hu�i
gi!

: (2)

In the Bayesian framework, we model the framelet
based sparsity prior model p�u� on the object u and
the TV sparsity prior model p�h� on the PSF as

p�u� ∝ exp�−τ‖Wu‖1�; p�h� ∝ exp�−α‖∇h‖1�; (3)

where W denotes the framelet transform, τ and α are the
positive parameters. According to the Bayes rule, the a
posteriori density is p�u; hjg� ∝ p�gju; h�p�u�p�h�, the
maximum a posteriori estimation is then equivalent
to minimizing the functional E�u; h� � − log p�u; hjg�,
i.e., to minimize

E�u; h� �
XN
i�1

��Hu�i − gi log �Hu�i� � τ‖Wu‖1

� α‖∇h‖1 � lu≥0; (4)

here, the role of lu≥0 is to impose the non-negative con-
straint on the estimation image u.

Thus, our method is to seek the optimal u and h
that minimize E�u; h�. The functional (4) is intuitive, it
penalizes the ℓ1-norm of the framelet transform coeffi-
cients of the image u and imposes the non-negativity
constraint on the image, and enforces a TV constraint
on the PSF aiming to increase the robustness to noise.
The alternate minimization approach [6,7] can be applied
to find u and h: in each step of the iterative procedure we
minimize with respect to either h or u while keeping
the other one fixed. The update of the PSF h can be
written as [2]
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hk�1
t � hk

1 − α div
�

∇hk

j∇hkj

�
�
�Uk�T

�
g

Ukhk

��
;

hk�1 � hk�1
tP

N
i�1 �hk�1

t �i
; (5)

where the superscript T denotes the adjoint operation.
The difficulties in finding u are that the data term is non-
quadratic and nonseparable and the ℓ1-norm term ‖Wu‖1
is nonsmooth and nonseparable. To overcome these, we
use split Bregman method [9]. The idea is to convert
the unconstrained minimization problem on u in (4)
into a constrained one by introducing three auxiliary
variables d1 � Hu, d2 � Wu, and d3 � u. Further the pro-
blem can be converted into an unconstrained problem
via the Bregman iteration:

min
u;d1;d2;d3

XN
i�1

��d1�i − gi log �d1�i� � τ‖d2‖1 � ld3≥0�d3�

� 1
2γ

�‖d1 −Hu − b1‖2
2 � ‖d2 −Wu − b2‖2

2

� ‖d3 − u − b3‖2
2�; (6)

where γ is the penalty parameter. Clearly, the minimiza-
tions of (6) with respect to u, d1, d2, and d3 are decoupled,
thus, can be further converted into four separate submi-
nimization problems where the update formulas respec-
tively are then

uk�1 � HT �dk1 − bk1� �WT�dk2 − bk2� � dk3 − bk3
HTH� 2I

; (7)

8>>><
>>>:

dk�1
1 � 1

2

�
sk �

������������������������
�sk�2 � 4γg

p �
;

dk�1
2 � maxf‖Wuk�1 � bk2‖1 − τγ; 0g Wuk�1�bk2

‖Wuk�1�bk2‖1
;

dk�1
3 � maxfuk�1 � bk3; 0g;

�8�

where sk � bk1 �Huk�1 − γ, I is the identity matrix. b1, b2,
and b3 are the Bregman variables and are updated as
follows:

8><
>:
bk�1
1 � bk1 �Huk�1 − dk�1

1 ;

bk�1
2 � bk2 �Wuk�1 − dk�1

2 ;

bk�1
3 � bk3 � uk�1 − dk�1

3 :

�9�

In (7), we set d01 � d02 � d03 � b01 � b02 � b03 � 0, H is
the block-circulant with circulant-block matrix. Thus,
(7) can be well implemented using the fast Fourier trans-
form to reduce the computational burden. Once uk�1 is
obtained, the three equations in (8) can be computed
parallelly. Subsequently, the three equations in (9) can
be also calculated parallelly. The B-splines framelet [7]
is used in our implementation. The interested reader
can refer to [7,10] for more implementation details on
the framelet transform.

To test the performance of the proposed method
(BPIDFR), we executed simulations with three kinds
of images (because of page limitation, test images are
omitted here) under Poisson noise process. Specifically,
owing to the statistical error of low photon counts,
the medical, microscopical, and astronomical images
are typically corrupted by Poisson noise. Each image
is degraded by the 15 × 15 Gaussian blur kernel with
the standard deviation of 2.5. Then the resulting blurred
image was contaminated by Poisson noise. For compar-
ison, the Richardson–Lucy total variation (RLTV) [2] and
RLSATV [4] blind deconvolution algorithms were also
tested. To measure the improvement in the restored
image quality, the normalized mean square error (NMSE)
‖u − û‖2

2∕‖u‖
2
2 is used, where u and û are the original and

the restored image, respectively.
First, we consider the medical image. Figure 1 shows a

computed tomography brain images simulation example
of restoration by RLTV, RLSATV, and BPIDFR. In our
test, we use the following setting: τ � 0.002, γ � 20∕τ,
α � 0.0008, and 200 iterations. Comparing Fig. 1(c) with
Fig. 1(d), it is observed that BPIDFR is able to preserve
images details and suppress Poisson noise simulta-
neously. The NMSE of three kinds of the degraded
images and the best restored images by the three meth-
ods are compared in Table 1. The best restored image is
selected to be the one with the lowest NMSE when the
regularization parameter changes. It can be seen that
the BPIDFR has achieved the smallest NMSE among
the three methods, and NMSE of the BPIDFR method is
considerably smaller than that of the degraded image for

(a) (b)

(c) (d)

Fig. 1. Restoration of a simulated degraded image.
(a) Degraded image, image restoration by (b) RLTV,
(c) RLSATV, and (d) BPIDFR.

Table 1. NMSE of Degraded Image and the Best

Restored Image (with the Lowest NSME) by

Different Algorithms

Image Restoration by

Image Degraded Image RLTV RLSATV BPIDFR

Brain 0.0567 0.0293 0.0198 0.0166
Circuit 0.0268 0.0125 0.0095 0.0079
Satellite 0.0741 0.0500 0.0431 0.0393
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every image. The NMSE versus the number of iterations
of the three methods on the brain image are plotted
in Fig. 2, where the convergence of BPIDFR is also
highlighted.
We further show the ability of our approach on real

astronomical images. An example of a real degraded
Saturn image is shown in Fig. 3. We use τ � 0.001,
γ � 10∕τ, and α � 0.0008, starting with 25 × 25 Gaussian
kernel with the started deviation of 1.5 for the initial PSF
and 180 iterations. Figure 3(b) is the restored result
by RLTV, noticeable piecewise constant can be seen.
Although RLSATV can restore more details compared
with RLTV as shown in Fig. 3(c), it also obviously intro-
duces artifacts caused by noise. BPIDFR remarkably re-
duces these adverse effects and as shown in Fig. 3(d), it
looks sharper as well as the edges are better preserved.
Another example of a real degraded lunar soil image is

shown in Fig. 4. We set τ � 0.001, γ � 2∕τ, and α �
0.0008 and choose 15 × 15 Gaussian kernel with the
started deviation of 1.8 as the initial PSF and 200 itera-
tions. It can be observed from Figs. 4(b) and 4(c) that
the recovered images by RLTV and RLSATV still exist
piecewise constant effects. Also, the noise amplification
are apparent, especially around the limb background
of the moon. The improvement of the RLSATV method
is not notable because the image contains little large
scale structure information. As shown in Fig. 4(d), the
restored image by BPIDFR looks natural with much ri-
cher detail information, such as the craters of the moon
surface. This happens because of the framelet regulariza-
tion. Since different framelet masks reflect different
orders of difference operators, BPIDFR can adaptively
apply difference operators according to the singularities
of the underlying solutions. Therefore, it can well pre-
serve various types of edges simultaneously. In addition,
the framelet coefficients of the noise pixels are large,
which are significantly penalized by the regularization
term ‖Wu‖1. Consequently, the noise is suppressed
substantially.

In conclusion, a new blind Poissonian images decon-
volution algorithm based on framelet regularization
has been introduced. The proposed method exploits
the sparsity of the image in the framelet transform
domain. Efficient numerical algorithms were also intro-
duced based on the split Bregman algorithm. Compara-
tive results on simulated and real images show that
the framelet based method outperforms the TV-based
methods in terms of restoring sharp features like edges
as well as suppressing the noise.

This work was supported by the Projection of the
National Natural Science Foundation of China under
Grant 60902060. The authors are grateful to the reviewers
for the valuable and insightful suggestions, which have
brought great improvements to this manuscript.
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Fig. 2. (Color online) NMSE versus the iteration number of the
three methods for the brain image.

(a) (b) (c) (d)

Fig. 3. Restoration of a Saturn image [11]. (a) Degraded image,
image restoration by (b) RLTV, (c) RLSATV, and (d) BPIDFR.

(a) (b)

(c) (d)

Fig. 4. Restoration of a lunar soil image [12]. (a) Degraded
image, restoration by (b) RLTV, (c) RLSATV, and (d) BPIDFR.
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