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ABSTRACT

Noisy image deblurring is to recover the blurry image in the
presence of the random noise. The key to this problem is to
know the noise level in each iteration. The existing meth-
ods manually adjust the regularization parameter for vary-
ing noise levels, which are quite inaccuracy and tedious for
practical application. In this work, we discover that the noise
level and the denoiser are tightly coupled. Consequently, we
propose a blind denoising convolutional neural network (BD-
CNN) consisting of two stages: a down-sampling regression
network for estimating noise level and a fully convolutional
network for denoising, such that our model could adaptively
handle the unknown noise level during iterations. Further, the
BDCNN functions as a discriminative prior and is plugged
into the iterative deblurring framework for noisy image de-
blurring. Experimental results demonstrate that the proposed
method outperforms state-of-the-art methods in terms of prac-
ticability and performance.

Index Terms— Noisy image deblurring, blind denoising
network, plug-and-play, iterative deblurring framework

1. INTRODUCTION

Image deblurring has been extensively studied and achieved
great success in the past decades. The blurred degradation
procedure can be formulated as y = K« + n, where y, K,
x and n are blurry image, blurred operator, latent image and
additive noise, respectively. Many natural image prior-based
approaches [1, 2, 3, 4, 5, 6, 7] have been proposed to solve the
deblurring problem, while they only focus on deblurring the
scenario with slight noise. Blurry image with considerable
noise is also common in real photography.

To address the noisy image deblurring problem, Aram
et al. [8] proposed the iterative optimization framework,
in which the image deblurring problem was decomposed
into two iterative sub-problems including deconvolution and
denoising. Since the deconvolution sub-problem is easy
to obtain the closed-form solution, they [8, 9, 10, 11, 12]
focused on designing a plug-and-play denoiser prior. The de-
noising sub-problem was formulated as a pioneering BM3D
[13] frame in [8]. In addition, the abundant hand-crafted
denoiser priors were designed to constrain the optimization-
based method, such as total variation [14], sparsity [15, 16]

and low-rank [17]. Recently, the discriminative learning

approaches [18, 19] were popular to denoising. Taking ad-

vantage of learning denoiser prior, the authors [10, 11, 12]

plugged the convolutional neural networks (CNN) into the

iterative framework for noisy image deblurring.

The key of existing methods lies in properly designed de-
noiser prior. The denoiser prior consists of not only denoiser
but also the regularization parameter (relate to noise level),
which directly decides the degree of denoising. Most exist-
ing methods manually obtain the parameter by tedious adjust-
ment. However, on the one hand, the empirical parameter is
not accurate enough to accommodate the complicated varia-
tions of noise level in deblurring iterations, leaving the under-
denoising or over-smoothing results. On the other hand, the
learning-based methods are custom-trained for specific noise
levels, in which a set of models are redundantly.

To overcome the two problems, we propose a novel blind
denoising convolutional neural network (BDCNN) as a plug-
and-play prior and integrate it into the iterative deblurring
framework for noisy image deblurring. We formulate the
correlation between noise level and denoiser via a two-stage
guidance network, including noise level estimation and im-
age denoising components. The first stage gradually learns
the global features for estimating noise level, which provides
the discriminative attention to guide the image denoising in
the second stage. Benefiting from the two-stage guidance
network, a single trained model achieves comparable perfor-
mance as a set of specific trained model. Rather than manual
adjustment, the proposed method adaptively estimates the
varied regularization parameter from input image in itera-
tions, resulting in promising performance and robustness of
algorithm. The contributions can be summarized as follows:
e We incorporate the BDCNN into iterative optimization

framework for noisy image deblurring. BDCNN adap-
tively learns the noise level and denoiser to frees the user
from tedious parameter tuning during iterations, and avoids
the under-denoising or over-smoothing results.

e We propose an efficient two-stage blind denoising network,
cascading noise level estimation sub-network and image
denoising sub-network, which could adaptively suppress
noise via a single trained model.

e Qualitative and quantitative experimental results demon-
strate that the proposed method outperforms state-of-the-
art methods in terms of practicability and performance.
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Fig. 1. The framework of proposed noisy image deblurring method. Given the blurry image and kernel, the proposed method
iteratively carries out deconvolution and adaptive noise removal. The noise removal is implemented by BDCNN, which consists

of noise level estimation and image denoising.

2. PROPOSED METHOD

2.1. Iterative Deblurring Framework

Maximum a posteriori (MAP) is a common framework to
formulate the image deblurring problem. For the additive
zero-mean Gaussian white noise, the minimization criterion
is given as
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where the 1 |y — K x> and ¢ (x) are fidelity and prior
terms respectlvely, and ) is a trade-off parameter.

Generally, half-quadratic splitting technique [10] can be
adopted to solve Eq. (1). We introduce auxiliary variable u
corresponding to x, and rewrite the Eq. (1) as

&, = argmin |y — K| + A (u) + 1 [u—z|}, @

where 7) is a penalty parameter. The fidelity term and prior
term are decoupled into two individual subproblems. We ob-
tain the solution for Eq. (2) by alternatively solving
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where 7 is related to noise level 0. v = (\/A/n)? = o2 is
the regularization parameter of Eq. (4), and k is the iteration
number.

Specifically, the fidelity term is involved in Eq. (3) corre-
sponding to the deconvolution problem, which is a quadratic
regularized least-squares minimization problem. Therefore,
we can obtain the fast closed-form solution through Fast
Fourier transform (FFT)
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where F(-) and F~1(-) are Fourier transform and inverse

Fourier transform, respectively.
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(a) under denoise (29.11, 0.8625)  (b) over denoise (29.76, 0.8755)  (c) proper denoise (31.21, 0.9199)

Fig. 2. Evaluation of the importance of regularization param-
ete. (a) is the result with smaller regularization parameter,
which is under-denoising and contains many artefacts. (b) is
the result with larger regularization parameter, which is over-
smoothing and damages the details. (c) is the result with the
proper regularization parameter used in the proposed method.

Equation (4) involving the prior term can be interpreted as
a denoising problem. Instead of hand-crafted prior and man-
ually designed regularization parameter, we develop a two-
stage blind denoising network to handle the denoising prob-
lem, which can be formulated as
Uk+1 = BDCNN(:Bk_H). (6)
BDCNN adaptively learns noise level from input and then de-
noising. We iteratively solve Eq. (5) and (6) to obtain the
clean image, and the overall framework is shown in Fig. 1.

2.2. Motivation

Why blind denoising network? Most of existing methods
obtain the solution of Eq. (4) via solving

ug1 = Denoiser(xgy1,7), @)
where the regularization parameter vy is obtained via tedious
parameter tuning. Since -y is dynamically varying with itera-
tions, it is hard to manually adjust to obtain a promising so-
lution of v in each iteration. Thus, deblurring results always
are affected by the inaccurate empirical parameter. As shown
in Fig. 2, the artefacts and over-smoothing occur in results
when the regularization parameter is lower or higher than the
promising solution. To avoid these negative effects, we ex-
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Fig. 3. Visual comparison of deblurring results. The two rows are blurry images with additive o = 2, and 2.55, respectively.

plicitly model the physical meaning of v, and develop a blind
denoising network to adaptively learn an accurate noise level
during iterations.
Why Two-stage? We firstly look closer to the denoising
problem in Eq. (4). When the prior is defined in intensity
space, the optimization-based solution can be formulated as
uy, = shrink (xx, ), (8)
where shrink is the soft thresholding operator. Given the
intermediate image xj, and regularization parameter -y in each
iteration, soft thresholding shrinks components of the image
above the threshold. Thus, shrink can be interpreted as a
denoiser and +y is the threshold.

Motivated by Eq. (8), we explicitly model noise level and
estimate the parameter . Then, rather than the shallow de-
noising operator shrink, we develop a deep effective denois-
ing network to perform denoising. Thus, we design a two-
stage network inspired by optimization as follow

ug, = Nety (xg, Nety(xy)) , ©)]
where Net, and Nets are noise level estimation sub-network
and image denoising sub-network, respectively. It is worth
noting that Eq. (9) shares the same formulation with Eq. (8),
which implies the two-stage blind denoising network. The
first stage estimates the parameter v in Eq. (8), which is fed
to the second stage combining with the noisy image.

2.3. Architecture of Blind Denoising Network

Noise Level Estimation Sub-network. The optimization-
based methods, such as noise level estimation algorithm [20],
have achieved state-of-the-art performance. However, they
separate the noise level estimation and image denoising. To
jointly model the two sub-problems, we develop a gradu-
ally down-sampling regression network to estimate the noise
level. Given an input image x, we extract the sliding patches
pz with the size of 64x64, where the stride of patch is 64.
Since each sliding patch will obtain a noise level, the final
level is the average of all noise levels. The formulation of
network can be written as

1 N :
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Fig. 4. Denoising results with different noise level.

where N is the number of sliding patches. The regression net-
work can obtain a successive value of noise level, and consists
of five residual blocks [21] without batch normalization oper-
ations. To ensure that the output is a single value, the plain
convolution is adopted in the last layer with 2x2 filter size.
Image Denoising Sub-network. Image denoising sub-
network takes both x; and oy as input to obtain the final
denoising result, while the two inputs have different physical
meaning. To eliminate the ambiguity, we firstly resize the
0 to the map with the same size of input image, and then
adopt a convolutional layer C to extract features of image and
noise level, respectively. The features are directly fed into the
denoising network as follow

upt1 = Nety(p, o) = F2(C(xx), C(S(o%))),  (11)
where the S is the resize operator. Nets consists of five resid-
ual blocks without pooling and a plain convolution. Instead of
directly predicting a clean image, we adopt the residual learn-
ing strategy as present in [19]. Except for special instructions,
the number of feature channel is 64 and the filter size is 3x3.

2.4. Training Details

We train the BDCNN in an end-to-end manner. The first
stage is supervised by L., meaning the Lo distance be-
tween truth level and prediction level. The second stage is
also supervised by L;¢q¢;, which means the £o between clean
image and restoration image. The total loss can be minimized
via

Ltotal = wlﬁlevel + w2£imagey (12)



Table 1. Comparative deblurring results (PSNR/SSIM) of

different blur with three additive noise level.
Motion blur (19 x 19)

o Blurry EPLL [22] IRCNN [10] DPDNN [12] BDCNN
2 22.92/0.5713 29.42/0.8691 31.54/0.8739  30.58/0.8698 32.03/0.8998
2.55| 22.88/0.5600 28.73/0.8432 30.84/0.8770  30.60/0.8769  31.08/0.8802
7.56| 22.13/0.4151 25.26/0.6826 27.32/0.7609 27.33/0.7626
Motion blur (17 x 17)
o Blurry EPLL [22] IRCNN [10] DPDNNJ12] BDCNN
2 22.39/0.5453 29.12/0.8615 31.37/0.8712  30.52/0.8697 31.67/0.8926
2.55| 22.35/0.5342 28.40/0.8339 30.66/0.8575  30.59/0.8770  30.73/0.8714
7.56| 21.69/0.3924 24.96/0.6743 27.05/0.7516 27.05/0.7535

Table 2. The accuracy evaluation of noise level estimation.
Liu et al. [20] BDCNN
Truth o Avg. RMSE  Std. dev. Avg. RMSE  Std. dev.
10 10.016  0.128 0.018 | 10097 0334 0.112
20 19.834 0187 0.038 | 20072  0.306 0.095
30 29.626  0.271 0.082 | 30071 0277 0.078
40 39.446  0.308 0.106 | 40.077  0.202 0.042
50 49294 0371 0.155 | 49.672 0213 0.047

where L4 is total loss, and w; and ws denote the trade-
off parameters, which are set to be 16 and 1, respectively.
We separately train the two stages, and then use the total loss
function to fine-tune the network.

3. EXPERIMENTAL RESULTS

Experimental Setting. We collect 432 images from Berke-
ley Segmentation Dataset (BSD) and 400 images from Water-
loo Exploration Database [23] to generate the training dataset.
Testing data contains the 68 images from BSD (BSD68) and
12 widely used testing images (Set12). During testing, the
total iteration number is 20. In the training stage, we set the
range of Gaussian noise levels as o € [1,50], and the patch
size as 64x64 where the slide of patch is 64. The training
dataset is reused five times to train a single model.

Image Denoising. Five methods are chosen for comparison,
including EPLL [22], BM3D [13], WNNM [24], DnCNN
[19]. Figure 4 shows the evaluation results on Setl2 dataset
with additive noise. The comparative denoising methods are
evaluated with the ground truth. Note that, even a single
trained model of proposed method also achieves comparable
performance of a set of DnCNN trained models, and outper-
forms the other traditional methods.

Image Deblurring. Four noisy image deblurring methods,
including EPLL [22], IRCNN [10] and DPDNN [12], are
used. We test DPDNN on the trained model (0=2.55) pro-
vided by the authors. We evaluate on BSD68 simulated
with three noise levels and two blurs. As shown in Table
1, although the single trained model is used in the proposed
method, it also outperforms the comparative methods. Figure
3 illustrates visual comparisons of the deblurring methods.
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Fig. 5. The varying curves of noise level and PSNR value in
iterations. The noise level is estimated after deconvolution,
and PSNR is evaluated after denoising in each iteration. Note
that, deconvolution will amplify the noise, resulting in much
higher the noise level than the original additive noise.

The EPLL remains some blur and IRCNN tends to over-
smooth details, and our method performs better in terms of
removing blur and preserving details. The above results in-
dicate that the proposed method is more robust for different
noise level and outperforms the comparative methods.
Accuracy of Noise Level Estimation. We compare the noise
level estimation results with Liu et al. [20], as shown in Table
2. The average (Avg.), root mean square error (RMSE) and
standard deviation (Std. dev.) is evaluated on Setl2 dataset
with synthetic noise. BDCNN achieves comparable but a lit-
tle worse results than Liu er al. for low noise level. For the
high noise level, the proposed method obtains the more accu-
rate results. In addition, the proposed method is more stable
than [20] for a large range of noise level, which is essential
for varying noise level during iterations.

Analysis of Deblurring Iteration. Figure 5 shows the esti-
mation noise level and PSNR in the process of iterative de-
blurring. We can observe that noise level decreases approxi-
mately linearly with the iterations, which proves the rational-
ity of parametric adjustment strategy in optimization-based
methods. The rate of decline is diverse for different additive
noise level, which means the single fixed strategy in existing
methods is not robust for different noise level. It also partially
explains why we design BDCNN to adaptively estimate the
noise level in each iteration. The PSNR increases with itera-
tion going on, and slowly changes in the last several iterations,
which validates the convergence of the proposed method.

4. CONCLUSION

In this paper, we have introduced a blind denoising network
under the iterative deblurring framework to address the noisy
image deblurring. We argue that noise level and prior are
tightly coupled and develop a two-stage network to jointly
learn the noise level and denoiser prior, which improves the
robustness of noise and frees the user from tedious parameter
tuning. Experimental results demonstrate that the proposed
method outperforms the state-of-the-art methods.
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