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Anisotropic Spectral-Spatial Total Variation Model
for Multispectral Remote Sensing

Image Destriping
Yi Chang, Luxin Yan, Member, IEEE, Houzhang Fang, Student Member, IEEE, and Chunan Luo

Abstract— Multispectral remote sensing images often suffer
from the common problem of stripe noise, which greatly
degrades the imaging quality and limits the precision of the
subsequent processing. The conventional destriping approaches
usually remove stripe noise band by band, and show their
limitations on different types of stripe noise. In this paper,
we tentatively categorize the stripes in remote sensing images
in a more comprehensive manner. We propose to treat the
multispectral images as a spectral-spatial volume and pose
an anisotropic spectral-spatial total variation regularization to
enhance the smoothness of solution along both the spectral and
spatial dimension. As a result, a more comprehensive stripes and
random noise are perfectly removed, while the edges and detail
information are well preserved. In addition, the split Bregman
iteration method is employed to solve the resulting minimization
problem, which highly reduces the computational load. We exten-
sively validate our method under various stripe categories and
show comparison with other approaches with respect to result
quality, running time, and quantitative assessments.

Index Terms— Destriping, denoising, spectral-spatial total
variation, split Bregman iteration, remote sensing image.

I. INTRODUCTION

REMOTE sensing images normally consist of dozens
or even hundreds of spectral bands, and have been

drawn many attentions from various application fields, such
as detecting minerals, urban planning, precision farming, etc.
Unfortunately, the stripe noise in multispectral images not only
greatly influences the visual quality of these images but also
limits the precision of the further processing, for instance, in
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Fig. 1. Categorization of stripes. (a) Regular periodic stripes. (b) Periodic
stripes with discontinuity. (c) Non-periodic stripes with random width.
(d) Non-periodic stripes with random length. (e) Mild stripes with mild
random noise. (f) Severe stripes with severe random noise.

classification, unmixing, target detection, etc. [1]–[4]. There-
fore, it is critical to suppress the stripes in the multispectral
image and improve its quality before the succeeding image
interpretation processes. The goal of this work is to remove
the stripe and improve its quality before the subsequent
interpretation.

A. Categorization of Stripes

In multispectral remote sensing imaging systems of two
different types, push-broom and cross-track imaging devices,
the stripes are mainly caused by relative gain and/or offset
differences in response of the detectors. The striping effect
has different characteristics, depending on the scanning mech-
anism of imaging instruments. In previous works, most of
the destriping methods are designed for specific satellite
imaging instruments, for instance for cross-track type [5]
and push-broom type [6]. These specific destriping methods
suggest different tactics according to the type of the stripes,
thus are lack of robustness to a variety of stripes. To the best
of our knowledge, few works on comprehensive striping cat-
egorization for both cross-track and push-broom sensors have
been attempted. In this work, according to the characteristic
of stripes in images, we firstly classify the stripe images into
six categories illustrated in Fig. 1.

The most common and easy to be removed stripe noise is
the regular periodic stripe. The periodic stripes corresponding
to the number of detectors always appear in the cross-track
scanning sensors, such as Moderate Resolution Imaging
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Spectroradiometer (MODIS) and Landsat Thematic
Mapper (TM). For example, in Fig. 1(a), there exist
eight stripe lines per ten lines, including six successive stripe
lines with different variances. These periodic stripes can be
observed over a whole swath and are usually caused from
the slight deviations between adjacent detectors. The stripes,
in Fig. 1(b), are also periodic but exhibit discontinuity in
single stripe line per ten lines. Due to the non-integrity
characteristic within a scan line, these stripes are hardly
removed by conventional methods.

The third case is the stripes being non-periodic, as
shown in Fig. 1(c), which usually occur in push-broom
imaging spectrometer, such as Hyperion onboard Earth
Observation-1 (EO-1) and Satellite Pour l’Observation de la
Terre (SPOT). These stripes arise from the unstable detectors
during a scanning cycle. They appear as bright or dark
lines with random widths. Even worse, some dead pixels are
distributed in the image, which do not convey any useful
information. In Fig. 1(d), the stripes are also non-periodic,
while they appear as bright and dark lines with random lengths
within a scan line, caused from the residual calibration errors
of the internal calibration system. These stripes as shown
in Fig. 1(d) usually appear in cross-track scanning sensors
systems.

In the fifth case, stripes and random noise coexist in
the images [5]–[9], for example in Fig. 1(e). Conventional
methods usually treat the stripe noise and random noise issue
separately. However, it is time-consuming and may suffer
from defective output for the mutual interference with each
other [10]. Therefore, we tend to regard this case as a new
stripe category and remove both the stripes and random noise
simultaneously. In Fig. 1(f), the image information is almost
overwhelmed by severe stripes and random noise, which
makes it impossible to recover useful information from single
band image.

B. Related Destriping Algorithms

In recent decades, many remote sensing image destriping
algorithms have been proposed. Corresponding to different
stripes, there are three main kinds of approaches for remov-
ing specific stripes in remote sensing image. The first kind
of destriping approaches is the digital filtering technique,
such as low-pass filter [11], wavelet analysis [12], and the
Fourier-wavelet combined domain filter [13]. These methods
mainly focus on suppressing the specific frequencies caused
by stripes in transformed domain, and follow the assumption
that stripes are periodic and can be identified from the power
spectrum. These digital filtering methods are easy to be
implemented but only work well for the periodic stripes in
cross-track scanning sensors. However, the details with the
same frequencies will also be affected along with the stripes,
thereby leading to image blurring and artifacts. For example,
Munch et al. [13] proposed a Fourier and wavelet combined
filter with fast and impressive destriping results, which fully
excavated the directional characteristic of the stripes via
wavelet decomposition. Some destriping methods [6], [14] first
detected the stripe lines and then made use of the interpolation

strategy to remove the stripes. Their performances heavily
depend on the accuracy of stripes detection.

Another class of destriping approaches focuses on the
statistical property of digital numbers (DNs) for each detector.
To remove the stripes, the distribution of stripes is rectified
to a reference distribution, such as moment matching [15]
and histogram matching [16]. The former assumes that the
mean and standard deviation of each detector are identical,
while the latter assumes the distributions of each detector in
a large scene are similar. These matching-based methods can
get satisfactory destriping results when the scenes are simple
and homogeneous. However, their performances are highly
limited because the strong similarity assumptions [17] are
always invalid. Wegner [17] proposed a method to overcome
this limitation by calculating the statistics only over homo-
geneous image regions. Furthermore, some hybrid approaches
combining statistical methods with advanced image processing
techniques have been suggested. In [5], the authors combined
histogram matching with facet filter to reduce stripe noise in
MODIS data. To some extent, the facet filter could suppress
the residual noise and random noise. Radiometric equalization-
based approach was also applied to remove non-periodic
stripes [18].

Recently, some interesting works regarded the destriping
issue as an ill-posed inverse problem [19]–[27], and then
optimized variational model incorporating some priors about
the image to obtain the desired destriping results. In 2009,
Shen and Zhang [19] firstly proposed a maximum-a-posteriori
destriping and inpainting method with a Huber-Markov prior,
which can be viewed as an alternative between total
variation (TV) regularization and Tikhonov regularization.
In [21], the authors proposed a more sophisticated unidirec-
tional TV model and made use of the directional information
of the stripes. However, because of the excessive constraints on
the unidirectional derivative, structural details with the same
direction as stripes are inevitably removed along with the
stripes. In our recent work [23], we presented a joint unidirec-
tional TV and framelet regularization method to remove stripes
as well as preserve structural details. Fehrenbach et al. [25]
proposed a simple class of parametric random processes
that describes the stripes named variational stationary noise
remover (VSNR). Instead of estimating the clear image, they
made use of the Huber-Markov prior to estimate the stripe
components. Taking the random noise into consideration, we
recently have proposed a simultaneous destriping and denois-
ing method by combining unidirectional total variation and
sparse representation [10].

C. Proposed Algorithm

The multispectral or hyperspectral image cube usually
consists of two spatial dimensions (along track and across
track) and one spectral dimension (wavelength), as illustrated
in Fig. 2. The spectral dimension provides extra comple-
mentary information. Taking use of the information both in
spatial and spectral domains can help improve restoration
performance. It is worth noting that most of the afore-
mentioned destriping methods remove the striping effects in
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Fig. 2. Illustration of the remote sensing spectral-spatial cube.

Fig. 3. The framework of the proposed ASSTV model.

a single band. The drawback of processing each band of
image in band-by-band manner is that it will lose the
consistency between consecutive bands. In fact, there are
many remote sensing denoising methods utilizing the spectral
information to improve their performances, such as spectral-
spatial adaptive total variation [9], 3D wavelets [34], and
nonlocal spectral-spatial structured sparse representation [35].
Therefore, how to utilize the spectral information in multi-
spectral image destriping is a noteworthy point. Only recently,
two hyperspectral image destriping approaches using low rank
matrix to exploit the high spectral correlation have also been
proposed [26], [27]. In this paper, from a spectral-spatial
smoothness perspective, we propose an anisotropic spectral-
spatial total variation (ASSTV) model for multispectral image
destriping, in which the stripes differences between different
bands and spatial property differences in spatial domain are
both considered.

While ASSTV belongs to the variation-based destriping
scheme, it is implemented through a novel prior that combines
anisotropic spatial smoothness and spectral smoothness. The
former utilizes the spatial directional characteristic of the
stripes to remove the stripes and preserve the edge information,
while the latter enforces the spectral consistency constraint to
help remove the severe stripes and random noise, so as to
obtain the robustness to various stripes. The main ideas and

contributions of the proposed approach can be summarized as
follows.

1) The proposed method treats the multispectral or hyper-
spectral remote sensing images as a spectral-spatial cube
and considers the consistency of the remote sensing
images in both the spectral and spatial domains, so as
to better remove the stripes.

2) A comprehensive categorization of the stripes is pro-
posed. We have shown the proposed method is robust in
different striping cases, even resilient in extreme large
amounts of noise.

3) To make the algorithm simple and fast to implement, we
extend the split Bregman method to solve the spectral-
spatial 3D TV minimization problem, in which the
optimization of the destriping model is split into several
easier subproblems.

D. Organization of This Paper

The remainder of this paper is organized as follows. The
proposed ASSTV destriping model is described in Section II.
In Section III, the optimization process by split Bregman
method is presented in detail. Section IV presents the exper-
imental results and discusses various aspects of the proposed
method. Finally, Section V concludes this paper.

II. ANISOTROPIC SPECTRAL-SPATIAL TOTAL

VARIATION DESTRIPING MODEL

A. Problem Formulation

In multispectral or hyperspectral remote sensing image
cube, the striping effect is assumed to be additive noise, and
the stripes degradation model can be written as

f (m, n, k) = u(m, n, k) + n(m, n, k), (1)

where m = 1, 2, . . . , M , n = 1, 2, . . . , N , and
k = 1, 2, . . . , K . M and N stand for the number of the rows
and columns in each band respectively, and K is the number
of sensor bands. Here, f (m, n, k), u(m, n, k), and n(m, n, k)
represent the degraded image, the ground-truth image, and the
noise of the location (m, n) in the k-th band, respectively. Note
that, the noise n in this work includes both stripe noise and
random noise.

For the purpose of discussing numerical algorithm, we write
the model (1) in matrix-vector form

f = u + n, (2)

where f , u, and n represent the vectorized version of
f , u and n, respectively, by stacking each of them into a
long column vector of size MNK×1 according to the lexi-
cographical order. For instance, f = [vec ( f1); vec ( f2); …;
vec ( fK )]∈ RM N K×1, in which vec ( fk) (k = 1, 2, . . . K )
denotes the vectorized observation image in the k-th band.

In this work, the destriping task is formulated as an ill-posed
inverse problem. Formally, our destriping task is to estimate
the latent clear image cube u from the given image cube f in
the presence of both stripes and random noise n. Based on the
regularization theory, the destriping model can be formulated
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Fig. 4. Directional characteristic of stripes in remote sensing cube. (a) Original MODIS image band 27. (b) Spatial horizontal gradient. (c) Spatial vertical
gradient. (d) Spectral gradient.

as the combination of the data fidelity term and regularization
term as follows:

û = arg min
u

1

2
|| u − f||22 + λR(u) (3)

The first term in (3) is the data fidelity term, which
provides the similarity between the desired clear image and
degraded image. The second term is the regularization term
by imposing constraints on the image, aiming at penalizing
the undesirable properties in images. λ is the regularization
parameter, which controls the tradeoff between the data fidelity
and regularization terms. The key is to construct appropriate
regularization terms to constrain the solution so as to remove
the stripes.

B. TV Model

In past decades, TV-based regularizations have been widely
used in various applications [28]–[30], due to their desirable
properties such as convexity and the ability to preserve sharp
edges. Rudin et al. [29] first introduced the TV model as
follows:

||u||TV =
∑

i

√
(Dxu)2

i + (Dyu)2
i (4)

where Dx and Dy are linear operators corresponding to the
horizontal and vertical first-order differences, respectively, at
pixel i. A straightforward way of extending the TV model
in (4) to multispectral images is to add up the TV model of
each band in a band-by-band fashion. Traditional methods with
operating on each band independently like (4) should adjust
their constraints hand by hand in different bands, which may
lead to the loss of the spectral consistency. Moreover, some
bands with highly contaminated noise cannot be well restored
with only the spatial information. Therefore, it is worthwhile
to incorporate the spectral information to the traditional
TV model.

C. Spectral-Spatial TV Model

As multispectral images have dozens or even hundreds of
bands, the pattern of the stripes in each band are different.
To some extent, these differences in multispectral images
provide extra complementary information. And the spectral
domain exhibits much fewer variations in terms of patterns

than the spatial domain [31]. Therefore, we argue that stripe
noise and random noise are advantageous to be removed from
both the spatial and spectral domains by enforcing smooth
constraints onto the image cube both along the spatial and
spectral dimension, somewhat analogous to the spatial and
temporal consistency strategies in video restoration [32], [33].
So, we can extend the traditional TV model in (4) to define
the isotropic spectral-spatial TV model as follows:

||u||SSTV =
∑

i

√
(Dxu)2

i + (Dyu)2
i + (Dzu)2

i (5)

where the operators Dx, Dy, and Dz are the first-order
forward finite-difference operators along the x-axis (horizontal
direction), y-axis (vertical direction), and z-axis (spectral
direction), respectively. The subscript i denotes the pixel’s
index in the image cube. The definitions of the finite-difference
operators are

⎧
⎪⎨

⎪⎩

Dxu(x, y, z) = u(x + 1, y, z) − u(x, y, z)

Dyu(x, y, z) = u(x, y + 1, z) − u(x, y, z)

Dzu(x, y, z) = u(x, y, z + 1) − u(x, y, z)

(6)

with periodic boundary conditions. By enforcing the con-
straints on both spatial and spectral dimensions, the piecewise
smooth property on both directions can be guaranteed.

D. Anisotropic Spectral-Spatial TV Model for Destriping

The spectral-spatial TV (SSTV) is effective for random
noise removal [5]. However, unlike random noise, the stripes
exhibit significantly structural characteristic. In the destriping
process, the stripes are easy to be treated as the large edges by
the isotropic TV model. As a result, the SSTV model tends to
suppress the stripes at the cost of damaging the useful edges
and detail information. Moreover, due to the clearly directional
characteristic of the stripes, it is easy to introduce obvious
blurring artifacts by the isotropic model [21]. To illustrate the
directional characteristic of the stripes, in Fig. 4, we show the
derivatives of the remote sensing volume at three directions.
The original MODIS image band 27 is shown in Fig. 4(a),
and the derivatives of the volume along the x-axis, y-axis, and
z-axis are shown in Figs. 4(b)-4(c), respectively. The spectral
gradient of one point is defined as the forward difference
along the spectral direction between two neighbor bands.
In clear remote sensing cube, the spectral gradient should be



1856 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 6, JUNE 2015

rather smooth. However, due to the stripe noise, it is observed
that the stripes severely damage the spatial horizontal gradient
[Fig. 4(b)] and spectral gradient [Fig. 4(d)], while the spatial
vertical gradient [Fig. 4(c)] is not influenced at all.

This observation motivates us to constrain the gradients
on both the spatial horizontal (x-axis) and spectral directions
(z-axis) while preserving the gradient as the degraded image
on the spatial vertical direction (y-axis). To do this, we
extend the isotropic spectral-spatial TV to the anisotropic
spectral-spatial TV as follow:

||u||ASSTV =
∑

i

(λ1|(Dxu)i| + λ2|(Dy(u − f))i| + λ3|(Dzu)i|)
(7)

where λ1, λ2, and λ3 are the regularization parameters.
Substituting R(u) by ASSTV regularization in (7), we
introduce the final energy functional about u as:

min
u

1

2
||u − f||22+λ1||Dxu||1+λ2||Dy(u − f)||1 + λ3||Dzu||1.

(8)

We explain each term of the model in detail as follows:
1) The first term is the reconstruction constraint, i.e., the

recovered result should be consistent with the observa-
tion according to the observed model.

2) The second term penalizes the �1-norm of the gradient
across the stripe line, so as to suppress the stripes.
In other words, it favors a solution u that its derivative
along the x-axis is rather smooth.

3) The third term enforces the �1-norm constraint on
the difference between the gradients along the stripe
of the desired and striped images, aiming to preserve
the gradient along the stripe. It is very reasonable since
the stripes have little influence on the gradient along the
stripes.

4) The fourth term penalizes the �1-norm of the gradient
along the spectral direction, so as to preserve the spectral
consistency. The stripes and random noise are random
distributed in each band, leading to the large spectral
discontinuity. Penalizing the �1-norm of the spectral
gradient will help suppress the stripes and random noise
as well as preserving the spectral details.

The flowchart of the proposed method is illustrated in Fig. 3.
In summary, the basic idea of the model is to penalize
the gradients across the stripes of the desired image while
preserving the gradients along the stripes of the desired image
as the degraded image; meanwhile, the destriped image cube
should keep the spectral consistency.

III. SPLIT BREGMAN OPTIMIZATION

The difficulties in determining u from (8) are that the
�1-norm terms are nondifferentiable. The split Bregman itera-
tion proposed by Tom Goldstein in [36] is efficient to solve the

�1-norm-based regularization, such as the TV model. In this
section, the split Bregman iteration is extended to optimize
the proposed ASSTV destriping model in (8) to solve the
3D image cube u. The main idea is to convert the uncon-
strained minimization problem on u in (8) into a constrained
one by introducing three auxiliary variables dx = Dxu,
dy = Dy(u − f), and dz = Dzu. The minimization of (8)
is equivalent to the constrained problem

min
u

1

2
||u − f||22 + λ1||dx||1 + λ2||dy||1 + λ3||dz||1

s.t. dx = Dxu, dy = Dy(u − f), dz = Dzu. (9)

Subsequently, by strictly applying the Bregman iteration, the
problem (9) can further be transformed into an unconstrained
minimization

min
u,dx ,dy ,dz

1

2
||u − f||22 + λ1||dx||1 + λ2||dy||1 + λ3||dz||1

+ α

2
||dx − Dxu − bx||22 + β

2
||dy − Dy(u − f) − by||22

+ γ

2
||dz − Dzu − bz||22. (10)

where α, β, and γ denote the Bregman penalization parame-
ters, the variable bx, by and bz are determined via Bregman
iteration. An alternative way to solve the problem in (10) is
alternating minimization scheme, iteratively optimizing one
variable while fixing others. Thus, the functional (10) can be
converted into four simpler minimization subproblems.

• The u-related subproblem is

min
u

1

2
||u − f||22 + α

2
||dk

x − Dxu − bk
x||22

+ β

2
||dk

y − Dy(u − f) − bk
y||22 + γ

2
||dk

z

− Dzu − bk
z ||22. (11)

It is a convex function and equal to the following linear
system

(1 + αDT
x Dx + βDT

y Dy + γ DT
z Dz)uk+1

= f + αDT
x (dk

x − bk
x) + βDT

y (Dk
y + Dyf − bk

y)

+ γ DT
z (Dk

z − bk
z ), (12)

which can be solved with a closed-form solution by
the fast Fourier transform (FFT), (13) as shown at
the bottom of this page, where F(·) denotes the fast
Fourier transform and F−1(·) the inverse transform. The
superscript T is the operator of matrix transpose, and
k is the iteration number.

• The dx-related subproblem is

min
dx

λ1||dx||1 + α

2
||dx − Dxu − bx||22. (14)

uk+1 = F−1

⎛

⎝
F

(
f + αDT

x (dk
x − bk

x) + βDT
y (dk

y + Dy f − bk
y) + γ DT

z (dk
z − bk

z )
)

1 + α (F(Dx))
2 + β

(F(Dy)
)2 + γ (F(Dz))

2

⎞

⎠ (13)
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Algorithm 1 Image Destriping With ASSTV Algorithm

It can be solved by using the soft shrinkage operator [37]
as follows

dk+1
x = shrink(Dxuk+1 + bk

x,
λ1

α
), (15)

where

shrink(r, ξ) = r

|r| ∗ max(r − ξ, 0). (16)

This shrinkage operator requires only a few operations per
element of dx. Similarly, dk+1

y and dk+1
z can be also derived

simultaneously:
⎧
⎪⎨

⎪⎩

dk+1
x = shrink(Dxuk+1 + bk

x,
λ1
α )

dk+1
y = shrink(Dy(uk+1 − f) + bk

y,
λ2
β )

dk+1
z = shrink(Dzuk+1 + bk

z ,
λ3
γ ).

(17)

Finally, the variables bk+1
x , bk+1

y , and bk+1
z are updated

parallelly as follows:
⎧
⎪⎨

⎪⎩

bk+1
x = bk

x + (Dxuk+1 − dk+1
x )

bk+1
y = bk

y + (Dy(uk+1 − f) − dk+1
y )

bk+1
z = bk

z + (Dzuk+1 − dk+1
z ).

(18)

In summary, the advantage of the split Bregman method
is that the difficult optimization problem in (8) is split into
the aforementioned four subproblems, which are relatively
easy to optimize. The u-related subproblem is accelerated by
FFT efficiently, and dx, dy, dz-related subproblems are solved
by the efficient soft shrinkage operator with a computational
complexity of O(N2). Moreover, dx, dy and dz-related sub-
problems are independent and can be efficiently computed
in parallel. Subsequently, bx , by, and bz can be updated
parallelly. This is the main reason why the split Bregman
iteration works extremely fast on the proposed ASSTV image
destriping model.

The algorithm procedure of ASSTV destriping method is
summarized in Algorithm 1.

IV. EXPERIMENTS AND DISCUSSION

A. Experiment Setting

In the simulated experiments, part of the original hyper-
spectral cube of size 256 × 256 × 56 was used to simulate
the striped images by adding stripe lines to the original
image. The data were provided by Professor David Landgrebe

and can be downloaded from [38], which were obtained via
push-broom sensors. In real experiments, in order to verify the
performance of the proposed algorithm for different types of
stripes, we chose two types of satellite images: the cross-track-
scanning-based MODIS images downloaded from [39] and
the push-broom-scanning-based Hyperion images downloaded
from [40]. The gray values of all the test images were
normalized between [0, 1]. Note that, although we use the
vector form to describe our method for clarity, in our
implementation image cube data was computed still in
3D matrix format.

We compared the proposed algorithm with wavelet trans-
form and adaptive frequency in [12] (WFAF), the total
variation model in equation (4) (TV), the unidirectional
TV algorithm in [21] (UTV), and the variational stationary
noise remover algorithm in [25] (VSNR). The WFAF and
VSNR algorithm implementations were kindly provided by
Dr. Roshan Pande-Chhetri and Dr. Pierre Weiss, respectively.

Several qualitative and quantitative assessments were
used to give an overall evaluation. The qualitative
assessments included visual destriping inspection, the
mean cross-track profile, and the power spectrum. The
quantitative evaluation indices included peak signal-to-noise
ratio (PSNR), structural similarity (SSIM) [41], Metric-Q [42],
inverse coefficient of variation (ICV) [19], [21], noise
reduction (NR) [19], [21], [26], and mean relative
deviation (MRD) [19], [26]. The PSNR and SSIM are
full-reference evaluation indices especially for the simulated
experiments, whereas the others are no-reference evaluation
indices. Metric-Q is used to assess the denoising performance,
while ICV, NR and MRD are specific for evaluating the
destriping performance. NR is the index to describe the ratio
of stripes noise reduction in the frequency domain. ICV
index evaluates the level of stripe noise and so would be
calculated for homogeneous striped regions. On the contrary,
MRD index is used to evaluate the performance of the
algorithms to retain the information of image regions that are
not affected by stripes, which measures the distortion caused
by the destriping algorithms. In this paper, the definition of
ICV, NR and MRD indices are directly referred to [19]. ICV
index is computed in homogeneous regions within a window
of 10 × 10 pixels, while MRD index is calculated in a
10 × 10 sharp region. The larger values of ICV and NR mean
the better destriping performance. Conversely, the smaller
MRD values denote the better destriping performance.

B. Simulated Experiments

In the simulated process, we added the synthetic stripe via
observed model (1) on the base of the original hyperspectral
image bands (band 31- band 40) in following five cases. From
case 1 to case 4, we gradually increased the noise level by
adding more striping lines. In case 5, we added stripes with a
bigger variance than that in case 1, leading to a more severe
striping effect. In all these cases, the locations of the stripes
between the neighbor bands are different. We show the visual
results of case 4 as an example, and the quantitative results of
other cases are listed in Table I.
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TABLE I

QUANTITATIVE EVALUATION RESULTS USING PSNR (dB) AND

SSIM INDEXES OF HYPERSPECTAL IMAGE BAND 37

Fig. 5. Destriping results in simulated case 4. (a) Original hyperspectral
image band 37. (b) Degraded with periodic stripes. Destriping results by
(c) WFAF, (d) TV, (e) UTV, and (f) ASSTV.

Fig. 6. Detailed regions cropped from Fig. 5. (a) Original image.
(b) Degraded with periodic stripes. Destriping results by (c) WFAF, (d) TV,
(e) UTV, and (f) ASSTV.

Figure 5(a) shows the original hyperspectral subimage of
band 37. The striped image, shown in Fig. 5(b), is case 4. For
convenience of comparison, the detailed regions cropped from
Fig. 5 are displayed in Fig. 6. It is observed that the proposed
ASSTV method obtains the best performance with respect to
removing stripes, preserving details, and minimizing artifacts.

Fig. 7. Destriping results of regular periodic stripes. (a) Original MODIS
image Terra band 28. Destriping results by (b) WFAF, (c) TV, (d) VSNR,
(e) UTV, and (f) ASSTV.

In Fig. 6(c), although the stripes are well removed by
WFAF method, some stripes-like artifacts, as indicated in the
red ellipses, are unexpectedly introduced. This is because the
edge structures with the same characteristic as the stripes
are falsely regarded as the stripes and handled by WFAF
method. Moreover, the contrast has been somehow decreased.
The TV method has blurred the detail information, and the
residual stripes still exist. Figure 6(e) shows the destriping
result with UTV, wherein certain structures lying along the
same direction as the stripes are degraded along with the
stripes, as shown in the red ellipses. As mentioned above,
the UTV approach lays emphasis on the smoothness of the
images along a certain direction such that it tends to yield
excessively destriped results. On one hand, the stripes are
satisfactorily removed by ASSTV method; on the other hand,
those structures lying along the same direction as the stripes
are well preserved. Comparing Fig. 6(e) with Fig. 6(f), one
can conclude that spectral consistency used in ASSTV model
helps preserve the detail information substantially.

The quantitative assessments listed in Table I show that the
ASSTV method gives the highest PSNR and SSIM values of
all the methods. It is worth noting that the PSNR value of
the degrade image in case 3 is 22.49 dB, while the proposed
method improves the PSNR value by almost 20 dB in the
presence of severe stripes.

C. Real Experiments

Figures 7-13 show the recovered results from all five
methods on six real striped images, which differ from other
types of stripes as shown in Fig. 1. The striped image selected
from MODIS Terra band 28, as shown in Fig. 7(a), is highly
contaminated by periodic stripes. Figure 8(a) shows periodic
stripes with discontinuity, wherein the stripes do not run
through the whole scan lines, as indicated by the elliptical
mark. The burr-like stripes commonly exist at the dark regions
in the MODIS images. Figure 9(a) is a subimage extracted
from Hyperion image band 133. The stripes in MODIS image
band 33, as shown in Fig. 11(a), appear as bright and dark
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Fig. 8. Destriping results of periodic stripes with discontinuity. (a) Original
MODIS image Aqua band 5. Destriping results by (b) WFAF, (c) TV,
(d) VSNR, (e) UTV, and (f) ASSTV.

Fig. 9. Destriping results of non-periodic stripes with random width.
(a) Original Hyperion image band 133. Restoration results by (b) WFAF,
(c) TV, (d) VSNR+BM3D, (e) UTV+BM3D, and (f) ASSTV.

Fig. 10. Detailed regions cropped from Fig. 9. (a) Original image. Destriping
results by (b) WFAF, (c) TV, (d) VSNR+BM3D, (e) UTV+BM3D, and
(f) ASSTV.

lines with random lengths within a scan line. Figure 12(a)
is a subimage extracted from MODIS image Aqua band 21,
in which stripes and random noise coexist. In Fig. 13(a),

Fig. 11. Destriping results of non-periodic stripes with random length.
(a) Original MODIS image band 33. Destriping results by (b) WFAF, (c) TV,
(d) VSNR, (e) UTV, and (f) ASSTV.

Fig. 12. Destriping results of moderate stripes and random noise. (a) Original
MODIS image Aqua band 21. Destriping results by (b) WFAF, (c) TV,
(d) VSNR, (e) UTV, and (f) ASSTV.

Fig. 13. Destriping results of severe stripes and random noise. (a) Original
Hyperion image band 74. Destriping results by (b) WFAF, (c) TV, (d) VSNR,
(e) UTV, and (f) ASSTV.

severe stripes and random noise overwhelm most of the useful
information. It seems an impossible mission to recover from
the single image.
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TABLE II

QUANTITATIVE EVALUATION RESULTS USING METRIC-Q INDEX OF MOIDS IMAGE AQUA BAND 21

TABLE III

QUANTITATIVE EVALUATION RESULTS USING ICV INDICES OF REAL IMAGES

It can be seen that ASSTV method significantly suppresses
stripes with fewer artifacts, and consistently outperforms the
compared methods with the best visual quality. Especially, for
those stripes hard to be handled, residual stripes can be seen
clearly in the results of other method. For example, the burr-
like stripes still remain in the dark regions in Figs. 8(b)-8(e).
Also, in the bottom-right red ellipse in Fig. 9(a), the stripes
appear as bright or dark columns with considerable widths and
useful information are totally overwhelmed by dead pixels.
Since VSNR and UTV cannot handle the random noise
in Fig. 9(a), we applied the BM3D denoising method [43]
to their destriping results, as shown in Figs. 9(d) and 9(e).
For convenience of comparison, the detailed regions cropped
from Fig. 9 are displayed in Fig. 10. In Figs. 10(b)-10(e)
by the compared methods, there more or less exist residual
stripes, and blur effect is obvious. In contrast, in Fig. 10(f),
the result image using the ASSTV method, not only the stripes
and random noise are effectively removed, but also the detail
structures are satisfactorily preserved.

Also, in Table II we list the quantitative index Metric-Q
values to demonstrate the denoising performance in Fig. 12.
It is shown that TV method obtains the highest Metric-Q
value and ASSTV gets the second highest value. However,
the TV method is at the cost of over smoothness, resulting
in piecewise constant effects as shown in Fig. 12(c).
On the contrary, the proposed ASSTV achieves a good
balance between denoising and detail preservation in the
destriping process.

Moreover, we compare the quantitative assessment
ICV values of the tested methods in Table III. It can be seen
that TV and ASSTV methods consistently obtain the best

ICV values, which means that the two methods always get
the best destriping performance with little residual noise.
However, these high ICV values of TV method are obtained
at the expense of over smoothness and extremely poor visual
quality in destriping results, which makes it inappropriate for
real applications.

Table IV lists the NR and MRD values of MODIS images.
As for NR index, we can find that ASSTV consistently obtain
the best values, except for Aqua band 5. The main reason is
TV method has over smoothed the result. As for MRD index,
both VSNR and ASSTV have obtained quite satisfactory
results. Overall, the quantitative results of the proposed method
are consistent for all test images. Moreover, compared with
other methods, ASSTV has obtained a satisfactory balance
between stripe removal and information preserving.

Overall, the results of the proposed method are consistent
for all test images, and exhibit good visual quality with fewer
artifacts than the results obtained by the compared methods.
Although the stripes are much related to the particular imaging
platform, our general method captures two intrinsic charac-
teristics of the striped remote sensing image cube: directional
characteristic of stripes in spatial domain and spectral
consistency characteristic in spectral domain. Every remote
sensing striped image maintains these two characteristics, no
matter where it comes from. That is the main reason why our
ASSTV method works well on different stripe categories.

Moreover, there are two interesting phenomena on Hyperion
images worth to be noticed. In Fig. 9(f), the proposed ASSTV
method suppresses the light cloud in the bottom-left red
ellipse, while other methods fail to achieve this. In Fig. 13(f),
the ASSTV method removes severe stripes and random noise
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TABLE IV

QUANTITATIVE EVALUATION RESULTS USING NR AND MRD INDICES OF MODIS IMAGES

Fig. 14. The spatial mean cross-track profiles for images shown in Fig. 7. (a) Original image. Destriping results by (b) WFAF, (c) TV, (d) VSNR, (e) UTV,
and (f) ASSTV.

simultaneously, and abundant structural information can be
seen clearly. We attribute these interesting results to the spec-
tral constraint along the spectral dimension in our model. Note
that, the spectral consistency in Hyperion image is extremely
high. Imposing a strong spectral smoothness constraint on the
spectral direction, the neighbor bands will provide additional
complementary information and help suppress the degrada-
tions in a certain band. But when spectral consistency is not
guaranteed, it may introduce unnecessary artifacts across the
bands. In this case, it needs to relax the spectral constrain
(we will discuss it in the latter section). Therefore, it may well
provide an alternative idea for cloud and random noise removal
in multispectral or hyperspectral remote sensing image.

D. Discussion

1) Spatial Analysis: We test the performance of the
proposed ASSTV method in spatial domain by two
qualitative indices: mean cross-track profile and power
spectrum. Figure 14 shows the spatial mean cross-track
profiles of the MODIS image Terra band 28. The horizontal
axis represents the column number, and the vertical axis
represents the mean value of each column in certain band.

The mean cross-track profile of the striped image fluctuates
wildly because of the stripes [Fig. 14(a)], while that of the
healthy image exhibits a somewhat smoother curve.

In Figs. 14(c) and 14(d), we can observe some mild
burrs in the curves, indicating that there are some residual
stripes in their results. Figures 14(b), 14(e) and 14(f) all
show satisfactory levels of smoothness. However, the images
corresponding to Fig. 14(b) and 14(e) are over smoothed,
and a considerable amount of detail information is lost.
The reason for WFAF method is that the structure informa-
tion has been corrupted in the filtering process, while the
UTV model places too much constraint on the unidirectional
derivative. The image corresponding to Fig. 14(f) achieves
an acceptable tradeoff between stripe removal and detail
preservation.

In Fig. 15, we plot the power spectrum of the MODIS image
Terra band 28. For better visualization, the spectral magnitudes
(the y-axis) are plotted with a logarithmic scale and the
frequencies (the x-axis) are plotted with normalized frequency.
In Fig. 15(a), there are several large impulses in the curve
due to the effects of stripes. After destriping, although large
impulses are greatly suppressed, there still exist light burrs, as
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Fig. 15. The spatial power spectrums for images shown in Fig. 7. (a) Original image. Destriping results by (b) WFAF, (c) TV, (d) VSNR, (e) UTV,
and (f) ASSTV.

Fig. 16. Reflectance spectra for several pixels from MODIS Terra bands 20 to 36 before and after destriping. (a) Pixel 16384. (b) Pixel 10000.

shown in Figs. 15(b)-15(e); while in Fig. 15(f), the impulses
are perfectly removed.

The main reason is that, the first and third terms of
ASSTV model in Eq. (8) achieves reasonable information
preserving ability, while the second and forth terms (Eq. (8))
can naturally produce a spatial-spectral smooth solution
faithful to the input, vastly benefiting stripe removal.
By balancing the regularization parameters, the ASSTV
model can produce acceptable tradeoff between stripe
removal and detail preservation with satisfactory results.

2) Spectral Analysis: Further, we attempt to demonstrate
that ASSTV method can still preserve the useful spectral
information while removing the noise from the spectral
analysis. In Fig. 16, we show the reflectance spectra for
pixels from the MODIS image Terra bands 20 to 36
(Corresponding to Fig. 7) before and after destriping. It can
be seen in Fig. 16(a) that the spectral consistent information
have been satisfactorily preserved. In Fig. 16(b), the stripe
removal leads to a slight difference in reflectance value
between before and after destriping in band 27.

3) Regularization Parameters Selection: In our model (8),
there are three regularization parameters λ1, λ2, and λ3.

Parameter λ1 and λ2 depend on the stripe level, and
larger values should be chosen for destriping severe stripes.
Parameter λ3 controls the contribution of the spectral smooth-
ness according to spectral consistency. For image bands
with low spectral consistency, one should select smaller λ3
value in order to relax the spectral smoothness across the
bands, or manually choose comparatively similar neighbor
bands as input. To show their effects on the destriping per-
formance, using simulated experiment case 4 as an exam-
ple, we give a sensitivity analysis for the three parameters.
Figures 17(a) - 17(c) show the change of the PSNR values
with the change of the parameter λ1, λ2, and λ3, respectively.
In Fig. 17(a), the highest PSNR value is achieved with para-
meter λ1 between [0.1, 0.5]. From Fig. 17(b) and 17(c), it is
shown that the destriping results exhibit robustness with the
changes of parameter λ2 and λ3. In all our implementations,
we empirically set the parameter ranging as λ1 ∈ [0.01, 1],
λ2 ∈ [1, 100], and λ3 ∈ [0.01, 10]. The Bregman parameters
were fixed as α = 10, β = 100, and γ = 10.

Furthermore, we give the destriping results of
Aqua band 1 to band 6 in Fig.18, and show heuristically how
to set the regularization parameters. It is seen in the first row
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Fig. 17. Sensitivity analysis of regularization parameters λ1, λ2, and λ3. Change of the PSNR values versus the parameter (a) λ1, (b) λ2, and (c) λ3.

Fig. 18. Destriping results of MODIS Aqua cube with high spectral consistency.

that the original image of each band varies mildly, which
means that the spectral consistency is relative high. Also,
it can be observed that the mild stripes vary with different
levels between bands. Thus, in this experiment, we set the
parameter λ1=0.1, λ2=1, λ3=0.1. In the second row, not
only the stripes in all bands are removed satisfactorily, but
also the structural information is well preserved.

4) Number of Bands Selection: For the proposed
ASSTV method, the number of the bands is an important
parameter. Note that, the number of the bands is highly
related to the spectral consistency. In this section, we present
an analysis about the effect of the band number on the
destriping result. We choose simulated experiments case 1
(low noise level) and case 4 (high noise level) as the example.
In Fig. 19, we show the changes of the PSNR and SSIM
values with the different numbers of bands (from 2 to 11)
under two noise levels.

From both Fig. 19(a) and 19(b), it can be seen that the
destriping results become gradually better with larger number
of bands. Nevertheless, when the number of bands is larger
than 7, both PSNR and SSIM values increase a little but with
extra computation and memory overheads. In our experiments,
we empirically set the number of the bands as 10. Since hyper-
spectral image cube could offer dozens or even hundreds of
bands, our ASSTV method can process the image cube group
by group, with a group of 10 bands. ASSTV model works
well when spectral consistency is guaranteed. How if this

condition is not provided? We performed another experiment
to illustrate how to obtain good results for contiguous bands
with far spectral distance.

Figure 20 shows the destriping results of MODIS image
Terra from band 27 to 30 with far spectral difference. It can
be seen that the original image of each band in the first
row varies sharply, especially between band 28 and 29. The
reason why we just heuristically choose four successive bands
as illustration is that in low spectral consistency case more
input bands do not mean better destriping performance. In this
experiment, we set the parameter λ1=0.5, λ2=1, λ3=0.01.
That is, in low spectral consistency situation with comparative
small λ3 and less image bands, ASSTV would be degenerated
into spatial domain-based method and still work well. In the
present work, we mainly consider the image bands with
high spectral consistency. The adaptive method of selecting
the number of bands and the spectral relationship are very
interesting works, which are worth investigating in our future
work.

5) Running Time: The proposed method obtains the clear
image via (13), which is accelerated by FFTs. The three
equations given by (17) can be computed via the shrinkage
operate parallelly, which is extremely fast and requires
only a few operations per element. Subsequently, the three
equations given by (18) can be also calculated parallelly.
All this ease of calculation makes the proposed method time-
saving. We compare the running time of several representative
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Fig. 19. Effects of the band numbers on destriping results under two noise levels. (a) PSNR and (b) SSIM values versus the band numbers.

Fig. 20. Destriping results of MODIS Terra cube with low spectral consistency.

TABLE V

RUNNIG TIME (IN SECONDS) OF DIFFERENT

METHODS IN THREE IMAGE SIZES

destriping methods. Running time reported in Table V was
obtained in Matlab 2010a on the same personal computer with
an Intel i3 CPU at 3.4-GHz and 2-GB memory. It can be seen
that the proposed method is quite fast, and can be further sped
up in optimized C.

6) Convergence: We also test the convergence property of
the proposed method. In this work, we use the normalized
step difference energy (NSDE) defined as: ||uk+1 −uk||/||uk||
to illustrate the convergence rate. Figure 21 illustrates the
evolutional curve of NSDE versus the iterations for MODIS
image, whose result is shown in Fig. 7. It can be seen that the

Fig. 21. NSDE versus the iteration number of the proposed method
for Fig. 7.

proposed method achieves good convergence behavior in both
the single band 28 and the whole volume, and converges after
only 5 iterations.

7) Limitations: The proposed ASSTV method is effective
for remove additive stripes. However, it can still be further
improved in some aspects. In this paper, the parameters



CHANG et al.: ASSTV MODEL FOR MULTISPECTRAL REMOTE SENSING IMAGE DESTRIPING 1865

are determined heuristically. Our future work will focus on
automatically or adaptively selecting the parameters involved
in the model. For instance, a monotonic decreasing weighted
strategy related to the spectral distance between the adjacent
bands can be integrated to adaptively adjust parameter λ3. For
large spectral distance, parameter λ3 will get a small value.
Conversely, for small spectral distance, parameter λ3 will get
a large value.

V. CONCLUSION

The robustness for different stripes, preservation of detail
information, and running time are difficult points and critical
issues for image destriping algorithms. In this work, we firstly
classify the stripe noise into a more comprehensive catego-
rization. By analyzing the existing methods, we propose the
anisotropic spectral-spatial total variation (ASSTV) regulariza-
tion model, utilizing both the spectral consistent information
in spectral domain and the directional information of stripes
in spatial domain. Then, the fast optimization method, split
Bregman iteration, is introduced to solve the resulting mini-
mization problem. From the large set of experiments on both
the qualitative and quantitative aspects, we have demonstrated
the excellent effectiveness of the proposed method.

Although the denoising-based methods for image destriping
are dominant, the image inpainting [44], [45] and image
decomposition [46], [47] based methods are promising for the
stripe removal. If we treat the stripes as the damages, such
as scratches, the image inpainting methods can be naturally
used. If we regard the striped image as the combination of
clear image and stripe component, the image decomposition
methods can be utilized. In future, we can incorporate these
techniques into destriping.
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